Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Estimation of Distribution Algorithms, Pedro Larra?aga; Jos? A. Lozano


Варианты приобретения
Цена: 27950.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-09-15
Ориентировочная дата поставки: Октябрь
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Pedro Larra?aga; Jos? A. Lozano
Название:  Estimation of Distribution Algorithms
ISBN: 9781461356042
Издательство: Springer
Классификация: ISBN-10: 1461356040
Обложка/Формат: Paperback
Страницы: 382
Вес: 0.58 кг.
Дата издания: 30.10.2012
Серия: Genetic Algorithms and Evolutionary Computation
Язык: English
Размер: 234 x 156 x 22
Основная тема: Computer Science
Подзаголовок: A New Tool for Evolutionary Computation
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is devoted to a new paradigm for evolutionary computation, named estimation of distribution algorithms (EDAs). This new class of algorithms generalizes genetic algorithms by replacing the crossover and mutation operators with learning and sampling from the probability distribution of the best individuals of the population at each iteration of the algorithm. Working in such a way, the relationships between the variables involved in the problem domain are explicitly and effectively captured and exploited.
This text constitutes the first compilation and review of the techniques and applications of this new tool for performing evolutionary computation. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is clearly divided into three parts. Part I is dedicated to the foundations of EDAs. In this part, after introducing some probabilistic graphical models - Bayesian and Gaussian networks - a review of existing EDA approaches is presented, as well as some new methods based on more flexible probabilistic graphical models. A mathematical modeling of discrete EDAs is also presented. Part II covers several applications of EDAs in some classical optimization problems: the travelling salesman problem, the job scheduling problem, and the knapsack problem. EDAs are also applied to the optimization of some well-known combinatorial and continuous functions. Part III presents the application of EDAs to solve some problems that arise in the machine learning field: feature subset selection, feature weighting in K-NN classifiers, rule induction, partial abductive inference in Bayesian networks, partitional clustering, and the search for optimal weights in artificial neural networks.
Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is a useful and interesting tool for researchers working in the field of evolutionary computation and for engineers who face real-world optimization problems. This book may also be used by graduate students and researchers in computer science.
... I urge those who are interested in EDAs to study this well-crafted book today. David E. Goldberg, University of Illinois Champaign-Urbana.



Algorithms in Bioinformatics

Автор: Sung
Название: Algorithms in Bioinformatics
ISBN: 1420070339 ISBN-13(EAN): 9781420070330
Издательство: Taylor&Francis
Рейтинг:
Цена: 13779.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Presents an introduction to the algorithmic techniques applied in bioinformatics. For each topic, this title details the biological motivation, defines the corresponding computational problems, and includes examples to illustrate each algorithm.

Information Theory, Inference and Learning Algorithms

Автор: David J. C. MacKay
Название: Information Theory, Inference and Learning Algorithms
ISBN: 0521642981 ISBN-13(EAN): 9780521642989
Издательство: Cambridge Academ
Рейтинг:
Цена: 9029.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This exciting and entertaining textbook is ideal for courses in information, communication and coding. It is an unparalleled entry point to these subjects for professionals working in areas as diverse as computational biology, data mining, financial engineering and machine learning.

Introduction to algorithms  3 ed.

Автор: Cormen, Thomas H., E
Название: Introduction to algorithms 3 ed.
ISBN: 0262033844 ISBN-13(EAN): 9780262033848
Издательство: MIT Press
Рейтинг:
Цена: 27588.00 р.
Наличие на складе: Нет в наличии.

Описание: A new edition of the essential text and professional reference, with substantial new material on such topics as vEB trees, multithreaded algorithms, dynamic programming, and edge-base flow.

Income distribution in macroeconomic models

Автор: Bertola, G. Foellmi, Reto Zweimuller, Josef
Название: Income distribution in macroeconomic models
ISBN: 0691121710 ISBN-13(EAN): 9780691121710
Издательство: Wiley
Рейтинг:
Цена: 15840.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Looks at the distribution of income and wealth and the effects that this has on the macroeconomy, and vice versa. Taking stock of results and methods developed in the context of the 1990s revival of growth theory, this book focuses on capital accumulation and long-run growth.

Handbook of Income Distribution SET vols. 2A-2B

Автор: Atkinson Anthony
Название: Handbook of Income Distribution SET vols. 2A-2B
ISBN: 0444594302 ISBN-13(EAN): 9780444594303
Издательство: Elsevier Science
Рейтинг:
Цена: 32844.00 р.
Наличие на складе: Нет в наличии.

Описание:

What new theories, evidence, explanations, and policies have shaped our studies of income distribution in the 21st century?

Editors Tony Atkinson and Francois Bourguignon assemble the expertise of leading authorities in this survey of substantive issues. In two volumes they address subjects that were not covered in Volume 1 (2000), such as education, health and experimental economics; and subjects that were covered but where there have been substantial new developments, such as the historical study of income inequality and globalization. Some chapters discuss future growth areas, such as inheritance, the links between inequality and macro-economics and finance, and the distributional implications of climate change. They also update empirical advances and major changes in the policy environment.

  • The volumes define and organize key areas of income distribution studies
  • Contributors focus on identifying newly developing questions and opportunities for future research
  • The authoritative articles emphasize the ways that income mobility and inequality studies have recently gained greater political significance
Distributed Algorithms,

Автор: Nancy A. Lynch
Название: Distributed Algorithms,
ISBN: 1558603484 ISBN-13(EAN): 9781558603486
Издательство: Elsevier Science
Рейтинг:
Цена: 20549.00 р.
Наличие на складе: Нет в наличии.

Описание: A guide to designing, implementing and analyzing distributed algorithms. It covers problems including resource allocation, communication, consensus among distributed processes, data consistency, deadlock detection, leader election and global snapshots.

Set Lighting Technician`s Handbook: Film Lighting Equipment, Practice, and Electrical Distribution

Автор: Box Harry
Название: Set Lighting Technician`s Handbook: Film Lighting Equipment, Practice, and Electrical Distribution
ISBN: 0240810759 ISBN-13(EAN): 9780240810751
Издательство: Taylor&Francis
Рейтинг:
Цена: 6123.00 р.
Наличие на складе: Нет в наличии.

Описание: An indispensable on-the-job reference for all film lighting technicians.

Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies

Автор: Kelleher John D., Macnamee Brian, D`Arcy Aoife
Название: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies
ISBN: 0262029448 ISBN-13(EAN): 9780262029445
Издательство: MIT Press
Рейтинг:
Цена: 13543.00 р.
Наличие на складе: Нет в наличии.

Описание:

A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.

Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context.

After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals.

Online Algorithms for Optimal Energy Distribution in Microgrids

Автор: Yu Wang; Shiwen Mao; R. Mark Nelms
Название: Online Algorithms for Optimal Energy Distribution in Microgrids
ISBN: 3319171321 ISBN-13(EAN): 9783319171326
Издательство: Springer
Рейтинг:
Цена: 9794.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Introduction.- System model and problem formulation.- Online and offline algorithms.- Distributed online algorithm.- Communication protocols.- Future work and open problems.

Algorithms for Obstetrics and Gynaecology

Автор: Mukhopadhyay Sambit, Morris Edward, Arulkumaran Sa
Название: Algorithms for Obstetrics and Gynaecology
ISBN: 0199651396 ISBN-13(EAN): 9780199651399
Издательство: Oxford Academ
Рейтинг:
Цена: 8129.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Algorithms in Obstetrics and Gynaecology presents the core knowledge needed to tackle all situations in obstetrics and gynaecology, in a structured fashion. All algorithms are designed to support rapid decision making in the most clinically relevant situations to minimise the risks of a poor outcome.

Algorithms and Programs of Dynamic Mixture Estimation

Автор: Ivan Nagy; Evgenia Suzdaleva
Название: Algorithms and Programs of Dynamic Mixture Estimation
ISBN: 3319646702 ISBN-13(EAN): 9783319646701
Издательство: Springer
Рейтинг:
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides a general theoretical background for constructing the recursive Bayesian estimation algorithms for mixture models.

Motion Estimation Algorithms for Video Compression

Автор: Borko Furht; Joshua Greenberg; Raymond Westwater
Название: Motion Estimation Algorithms for Video Compression
ISBN: 146137863X ISBN-13(EAN): 9781461378631
Издательство: Springer
Рейтинг:
Цена: 27950.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Then, we give a survey of current motion estimation search algorithms, including the exhaustive search and a number of fast search algorithms. The complexity of the DCUPS algorithm is comparable to other popular motion estimation techniques, however the algorithm shows superior results in terms of compression ratios and video qUality.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия