Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Neural Networks and Fuzzy Systems, Shigeo Abe


Варианты приобретения
Цена: 13974.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Shigeo Abe
Название:  Neural Networks and Fuzzy Systems
ISBN: 9781461378693
Издательство: Springer
Классификация:




ISBN-10: 1461378699
Обложка/Формат: Paperback
Страницы: 258
Вес: 0.39 кг.
Дата издания: 30.10.2012
Язык: English
Размер: 234 x 156 x 15
Основная тема: Computer Science
Подзаголовок: Theory and Applications
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Neural Networks and Fuzzy Systems: Theory and Applications discusses theories that have proven useful in applying neural networks and fuzzy systems to real world problems.


Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization

Автор: Patricia Melin; Oscar Castillo; Janusz Kacprzyk
Название: Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization
ISBN: 331917746X ISBN-13(EAN): 9783319177465
Издательство: Springer
Рейтинг:
Цена: 23508.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents recent advances on the design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization and their application in areas such as, intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems.

Neural Networks and Fuzzy Systems

Автор: Shigeo Abe
Название: Neural Networks and Fuzzy Systems
ISBN: 0792398149 ISBN-13(EAN): 9780792398141
Издательство: Springer
Рейтинг:
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Discusses theories that have proven useful in applying neural networks and fuzzy systems to real world problems. This book includes performance comparison of neural networks and fuzzy systems using data gathered from real systems. It covers topics covered like: Hopfield network for combinatorial optimization problems, multilayered neural networks.

Modular Neural Networks and Type-2 Fuzzy Systems for Pattern Recognition

Автор: Patricia Melin
Название: Modular Neural Networks and Type-2 Fuzzy Systems for Pattern Recognition
ISBN: 3642270271 ISBN-13(EAN): 9783642270277
Издательство: Springer
Рейтинг:
Цена: 18284.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book covers hybrid intelligent systems using type-2 fuzzy logic and modular neural networks for pattern recognition applications. Includes basic theory, use of type-2 fuzzy models, optimization of type-2 fuzzy systems and modular neural networks and more.

Fundamentals of Computational Intelligence - Neural Networks, Fuzzy Systems, and Evolutionary Computation

Автор: Keller
Название: Fundamentals of Computational Intelligence - Neural Networks, Fuzzy Systems, and Evolutionary Computation
ISBN: 1119214343 ISBN-13(EAN): 9781119214342
Издательство: Wiley
Рейтинг:
Цена: 15682.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Provides an in-depth and even treatment of the three pillars of computational intelligence and how they relate to one another This book covers the three fundamental topics that form the basis of computational intelligence: neural networks, fuzzy systems, and evolutionary computation.

Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization

Автор: Patricia Melin; Oscar Castillo; Janusz Kacprzyk
Название: Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization
ISBN: 331936961X ISBN-13(EAN): 9783319369617
Издательство: Springer
Рейтинг:
Цена: 20896.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents recent advances on the design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization and their application in areas such as, intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems.

A Theory of Learning and Generalization: With Applications to Neural Networks and Control Systems

Название: A Theory of Learning and Generalization: With Applications to Neural Networks and Control Systems
ISBN: 1849968675 ISBN-13(EAN): 9781849968676
Издательство: Springer
Рейтинг:
Цена: 23508.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: How does a machine learn a new concept on the basis of examples? This second edition takes account of important new developments in the field. It also deals extensively with the theory of learning control systems, now comparably mature to learning of neural networks.

Applications of Neural Networks in High Assurance Systems

Автор: Johann M.Ph. Schumann; Yan Liu
Название: Applications of Neural Networks in High Assurance Systems
ISBN: 3642106897 ISBN-13(EAN): 9783642106897
Издательство: Springer
Рейтинг:
Цена: 23508.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This is the first book to directly address a key part of neural network technology: state-of-the-art methods used to pass the tough verification and validation standards required in many safety-critical applications.

Neural Networks for Modelling and Control of Dynamic Systems / A Practitioner`s Handbook

Автор: Norgaard M., Ravn O., Poulsen N.K., Hansen L.K.
Название: Neural Networks for Modelling and Control of Dynamic Systems / A Practitioner`s Handbook
ISBN: 1852332271 ISBN-13(EAN): 9781852332273
Издательство: Springer
Рейтинг:
Цена: 11179.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The technology of neural networks has attracted much attention in recent years. Their ability to learn nonlinear relationships is widely appreciated and is utilized in many different types of applications; modelling of dynamic systems, signal processing, and control system design being some of the most common. The theory of neural computing has matured considerably over the last decade and many problems of neural network design, training and evaluation have been resolved. This book provides a comprehensive introduction to the most popular class of neural network, the multilayer perceptron, and shows how it can be used for system identification and control. It aims to provide the reader with a sufficient theoretical background to understand the characteristics of different methods, to be aware of the pit-falls and to make proper decisions in all situations. The subjects treated include: System identification: multilayer perceptrons; how to conduct informative experiments; model structure selection; training methods; model validation; pruning algorithms. Control: direct inverse, internal model, feedforward, optimal and predictive control; feedback linearization and instantaneous-linearization-based controllers. Case studies: prediction of sunspot activity; modelling of a hydraulic actuator; control of a pneumatic servomechanism; water-level control in a conical tank. The book is very application-oriented and gives detailed and pragmatic recommendations that guide the user through the plethora of methods suggested in the literature. Furthermore, it attempts to introduce sound working procedures that can lead to efficient neural network solutions. This will make the book invaluable to the practitioner and as a textbook in courses with a significant hands-on component.

Fuzzy Networks for Complex Systems

Автор: Alexander Gegov
Название: Fuzzy Networks for Complex Systems
ISBN: 3642265359 ISBN-13(EAN): 9783642265358
Издательство: Springer
Рейтинг:
Цена: 30606.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book sets out the concept of a fuzzy network with rule bases as nodes whose connections are the interactions between the rule bases in the form of outputs fed as inputs. This systematic study will improve the feasibility and transparency of fuzzy models.

Neural Networks for Pattern Recognition

Автор: Bishop, Christopher M.
Название: Neural Networks for Pattern Recognition
ISBN: 0198538642 ISBN-13(EAN): 9780198538646
Издательство: Oxford Academ
Рейтинг:
Цена: 13939.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is the first to provide a comprehensive account of neural networks from a statistical perspective. Its emphasis is on pattern recognition, which currently represents the area of greatest applicability for neural networks. By focusing on pattern recognition, the book provides a much more extensive treatment of many topics than is available in earlier books.

Pattern Recognition and Neural Networks

Автор: Brian D. Ripley
Название: Pattern Recognition and Neural Networks
ISBN: 0521717701 ISBN-13(EAN): 9780521717700
Издательство: Cambridge Academ
Рейтинг:
Цена: 7762.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This 1996 book is a reliable account of the statistical framework for pattern recognition and machine learning. Valuable advice is included on both theory and applications, while case studies based on real data sets help readers develop their understanding. All data sets are available from www.stats.ox.ac.uk/~ripley/PRbook/

Artificial Neural Networks for Modelling and Control of Non-Linear Systems

Автор: Johan A.K. Suykens; Joos P.L. Vandewalle; B.L. de
Название: Artificial Neural Networks for Modelling and Control of Non-Linear Systems
ISBN: 0792396782 ISBN-13(EAN): 9780792396789
Издательство: Springer
Рейтинг:
Цена: 23508.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Artificial neural networks possess several properties that make them particularly attractive for applications to modelling and control of complex non-linear systems. Topics include non-linear system identification, neural optimal control, top-down model based neural control design and stability analysis of neural control systems.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия