Orthogonal Polynomials for Exponential Weights, Eli Levin; Doron S. Lubinsky
Автор: Dunkl Название: Orthogonal Polynomials of Several Variables ISBN: 1107071895 ISBN-13(EAN): 9781107071896 Издательство: Cambridge Academ Рейтинг: Цена: 21226.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Serving both as an introduction to the subject and as a reference, this book covers the general theory and emphasizes the classical types of orthogonal polynomials, or those of Gaussian type. Containing 25% brand new material, this revised edition reflects progress made in the field over the past decade.
Автор: Doman Brian George Spencer Название: The Classical Orthogonal Polynomials ISBN: 9814704032 ISBN-13(EAN): 9789814704038 Издательство: World Scientific Publishing Рейтинг: Цена: 11880.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
This book defines sets of orthogonal polynomials and derives a number of properties satisfied by any such set. It continues by describing the classical orthogonal polynomials and the additional properties they have.
The first chapter defines the orthogonality condition for two functions. It then gives an iterative process to produce a set of polynomials which are orthogonal to one another and then describes a number of properties satisfied by any set of orthogonal polynomials. The classical orthogonal polynomials arise when the weight function in the orthogonality condition has a particular form. These polynomials have a further set of properties and in particular satisfy a second order differential equation.
Each subsequent chapter investigates the properties of a particular polynomial set starting from its differential equation.
Автор: Paul Nevai Название: Orthogonal Polynomials ISBN: 9401067112 ISBN-13(EAN): 9789401067119 Издательство: Springer Рейтинг: Цена: 12157.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Proceedings of the NATO Advanced Study Institute on Orthogonal Polynomials and Their Applications, Columbus, Ohio, U.S.A., May 22-June 3, 1989
Автор: Walter Gautschi; Gene H. Golub; Gerhard Opfer Название: Applications and Computation of Orthogonal Polynomials ISBN: 3764361379 ISBN-13(EAN): 9783764361372 Издательство: Springer Рейтинг: Цена: 18161.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume contains a collection of papers dealing with applications of orthogonal polynomials and methods for their computation, of interest to a wide audience of numerical analysts, engineers, and scientists. The applications address problems in applied mathematics as well as problems in engineering and the sciences.
Автор: Manuel Alfaro; Jesus S. Dehesa; Francisco J. Marce Название: Orthogonal Polynomials and their Applications ISBN: 3540194894 ISBN-13(EAN): 9783540194897 Издательство: Springer Рейтинг: Цена: 4884.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The Segovia meeting set out to stimulate an exchange of ideas between experts in the area of orthogonal polynomials and its applications. This volume contains research papers as well as survey papers about fundamental questions in the field and its relationship with other fields such as group theory, Pade approximation and differential equations.
Автор: Beals Название: Special Functions and Orthogonal Polynomials ISBN: 1107106982 ISBN-13(EAN): 9781107106987 Издательство: Cambridge Academ Рейтинг: Цена: 11880.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book provides a graduate-level introduction to special functions - a very active area of research and application. Emphasis is given to unifying aspects and to motivation, making it ideal for self-study, while its comprehensive coverage of standard and newer topics and its extensive bibliography also make it a valuable reference.
Автор: I. Gohberg Название: Orthogonal Matrix-valued Polynomials and Applications ISBN: 3034854749 ISBN-13(EAN): 9783034854740 Издательство: Springer Рейтинг: Цена: 11179.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This paper is a largely expository account of the theory of p x p matrix polyno- mials associated with Hermitian block Toeplitz matrices and some related problems of interpolation and extension. , hn of p x p matrices with h-i = hj for j = 0, ... We let k = O, ... , hk and shall denote its 1 inverse H k by (k)] k [ r = .. k = O, ...
Автор: Walter Van Assche Название: Asymptotics for Orthogonal Polynomials ISBN: 3540180230 ISBN-13(EAN): 9783540180234 Издательство: Springer Рейтинг: Цена: 5583.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Presents some results involving the asymptotic behaviour of orthogonal polynomials when the degree tends to infinity, assuming only a basic knowledge of real and complex analysis. This monograph provides an extensive treatment for orthogonal polynomials on a compact set and on an unbounded set.
Автор: Arnold F. Nikiforov; Sergei K. Suslov; Vasilii B. Название: Classical Orthogonal Polynomials of a Discrete Variable ISBN: 3642747507 ISBN-13(EAN): 9783642747502 Издательство: Springer Рейтинг: Цена: 9794.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Mathematical modelling of many physical processes involves rather complex dif- ferential, integral, and integro-differential equations which can be solved directly only in a number of cases. Therefore, as a first step, an original problem has to be considerably simplified in order to get a preliminary knowledge of the most important qualitative features of the process under investigation and to estimate the effect of various factors. Sometimes a solution of the simplified problem can be obtained in the analytical form convenient for further investigation. At this stage of the mathematical modelling it is useful to apply various special functions. Many model problems of atomic, molecular, and nuclear physics, electrody- namics, and acoustics may be reduced to equations of hypergeometric type, a(x)y" + r(x)y' + AY = 0, (0.1) where a(x) and r(x) are polynomials of at most the second and first degree re- spectively and A is a constant E7, AI, N18]. Some solutions of (0.1) are functions extensively used in mathematical physics such as classical orthogonal polyno- mials (the Jacobi, Laguerre, and Hermite polynomials) and hypergeometric and confluent hypergeometric functions.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru