Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Adaptive and Natural Computing Algorithms, Marco Tomassini; Alberto Antonioni; Fabio Daolio;


Варианты приобретения
Цена: 6986.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Marco Tomassini; Alberto Antonioni; Fabio Daolio;
Название:  Adaptive and Natural Computing Algorithms
ISBN: 9783642372124
Издательство: Springer
Классификация: ISBN-10: 3642372120
Обложка/Формат: Paperback
Страницы: 506
Вес: 0.72 кг.
Дата издания: 20.03.2013
Серия: Theoretical Computer Science and General Issues
Язык: English
Размер: 234 x 156 x 27
Основная тема: Computer Science
Подзаголовок: 11th International Conference, ICANNGA 2013, Lausanne, Switzerland, April 4-6, 2013, Proceedings
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание:

On Appropriate Refractoriness and Weight Increment in Incremental Learning.- Vector Generation and Operations in Neural Networks Computations.- Synaptic Scaling Balances Learning in a Spiking Model of Neocortex.- Can Two Hidden Layers Make a Difference.- Time Series Visualization Using Asymmetric Self-Organizing Map.- Intelligence Approaches Based Direct Torque Control of Induction Motor.- Classifier Ensembles Integration with Self-configuring Genetic Programming Algorithm.- A Multi-objective Proposal Based on Firefly Behaviour for Green Scheduling in Grid Systems.- A Framework for Derivative Free Algorithm Hybridization.- PSO-Tagger: A New Biologically Inspired Approach to the Part-of-Speech Tagging Problem.- Training Support Vector Machines with an Heterogeneous Particle Swarm Optimizer.- Fitness Landscape-Based Characterisation of Nature-Inspired Algorithms.- Evolutionary Generation of Small Oscillating Genetic Networks.- Using Scout Particles to Improve a Predator-Prey Optimizer.- QR-DCA: A New Rough Data Pre-processing Approach for the Dendritic Cell Algorithm.- Convergence Rates of Evolutionary Algorithms for Quadratic Convex Functions with Rank-Deficient Hessian.- The Scale-Up Performance of Genetic Algorithms Applied to Group Decision Making Problems.- Using Genetic Programming to Estimate Performance of Computational Intelligence Models.- Multi-caste Ant Colony Algorithm for the Dynamic Traveling Salesperson Problem.- Generalized Information-Theoretic Measures for Feature Selection.- PCA Based Oblique Decision Rules Generating.- Cardinality Problem in Portfolio Selection.- Full and Semi-supervised k-Means Clustering Optimised by Class Membership Hesitation.- Defining Semantic Meta-hashtags for Twitter Classification.- Reinforcement Learning and Genetic Regulatory Network Reconstruction.- Nonlinear Predictive Control Based on Least Squares Support Vector Machines Hammerstein Models.- Particle Swarm Optimization with Transition Probability for Timetabling Problems.- A Consensus Approach for Combining Multiple Classifiers in Cost-Sensitive Bankruptcy Prediction.- On the Regularization Parameter Selection for Sparse Code Learning in Electrical Source Separation.- Region Based Fuzzy Background Subtraction Using Choquet Integral.- A Robust Fuzzy Adaptive Control Algorithm for a Class of Nonlinear Systems.- Disturbance Measurement Utilization in the Efficient MPC Algorithm with Fuzzy Approximations of Nonlinear Models.- Fast Submanifold Learning with Unsupervised Nearest Neighbors.- Using Carrillo-Lipman Approach to Speed up Simultaneous Alignment and Folding of RNA Sequences.- Large Scale Metabolic Characterization Using Flux Balance Analysis and Data Mining.- Automatic Procedures to Assist in Manual Review of Marine Species Distribution Maps.- Mining the Viability Profiles of Different Breast Cancer: A Soft Computing Perspective.- Image Representation and Processing Using Ternary Quantum Computing.- Firefly-Inspired Synchronization of Sensor Networks with Variable Period Lengths.- Phase Transitions in Fermionic Networks.- New Selection Schemes in a Memetic Algorithm for the Vehicle Routing Problem with Time Windows.- Classification Based on the Self-Organization of Child Patients with Developmental Dysphasia.- Similarity Analysis Based on Bose-Einstein Divergences for Financial Time Series.- Exploratory Text Analysis: Data-Driven versus Human Semantic Similarity Judgments.- Linear Support Vector Machines for Error Correction in Optical Data Transmission.- Windows of Driver Gaze Data: How Early and How Much for Robust Predictions of Driver Intent.- Particle Swarm Optimization for Auto-localization of Nodes in Wireless Sensor Networks.- Effective Rule-Based Multi-label Classification with Learning Classifier Systems.- Evolutionary Strategies Algorithm Based Approaches for the Linear Dynamic System Identification.- A Genetic Algorithm Approach for Minimizing the Number of Columnar Runs in a Column Store T



Algorithms in Bioinformatics

Автор: Sung
Название: Algorithms in Bioinformatics
ISBN: 1420070339 ISBN-13(EAN): 9781420070330
Издательство: Taylor&Francis
Рейтинг:
Цена: 13779.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Presents an introduction to the algorithmic techniques applied in bioinformatics. For each topic, this title details the biological motivation, defines the corresponding computational problems, and includes examples to illustrate each algorithm.

Mobile Cloud Computing: Architectures, Algorithms and Applications

Автор: Debashis De
Название: Mobile Cloud Computing: Architectures, Algorithms and Applications
ISBN: 1482242834 ISBN-13(EAN): 9781482242836
Издательство: Taylor&Francis
Рейтинг:
Цена: 20671.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Minimize Power Consumption and Enhance User Experience

Essential for high-speed fifth-generation mobile networks, mobile cloud computing (MCC) integrates the power of cloud data centers with the portability of mobile computing devices. Mobile Cloud Computing: Architectures, Algorithms and Applications covers the latest technological and architectural advances in MCC. It also shows how MCC is used in health monitoring, gaming, learning, and commerce.

The book examines computation within a mobile device; the evolution, architecture, and applications of cloud computing; the integration of mobile computing and cloud computing; offloading strategies that address constraints such as poor battery life; and green technologies to optimize mobile power consumption. It also presents various resource allocation schemes of MCC, the architecture and applications of sensor MCC, the new concept of mobile social cloud, security and privacy issues in MCC, and different types of trust in MCC.

In addition, the book explains how to integrate MCC with vehicular networks, compares economic models, and explores the application of MCC to mobile learning, vehicle monitoring, digital forensic analysis, health monitoring, and other areas. The book concludes with a discussion of possible solutions to challenges such as energy efficiency, latency minimization, efficient resource management, billing, and security.

Machine Learning

Автор: Marsland
Название: Machine Learning
ISBN: 1466583282 ISBN-13(EAN): 9781466583283
Издательство: Taylor&Francis
Рейтинг:
Цена: 12095.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

A Proven, Hands-On Approach for Students without a Strong Statistical Foundation

Since the best-selling first edition was published, there have been several prominent developments in the field of machine learning, including the increasing work on the statistical interpretations of machine learning algorithms. Unfortunately, computer science students without a strong statistical background often find it hard to get started in this area.

Remedying this deficiency, Machine Learning: An Algorithmic Perspective, Second Edition helps students understand the algorithms of machine learning. It puts them on a path toward mastering the relevant mathematics and statistics as well as the necessary programming and experimentation.

New to the Second Edition

  • Two new chapters on deep belief networks and Gaussian processes
  • Reorganization of the chapters to make a more natural flow of content
  • Revision of the support vector machine material, including a simple implementation for experiments
  • New material on random forests, the perceptron convergence theorem, accuracy methods, and conjugate gradient optimization for the multi-layer perceptron
  • Additional discussions of the Kalman and particle filters
  • Improved code, including better use of naming conventions in Python

Suitable for both an introductory one-semester course and more advanced courses, the text strongly encourages students to practice with the code. Each chapter includes detailed examples along with further reading and problems. All of the code used to create the examples is available on the author's website.

Microeconometrics Using Stata

Автор: Cameron
Название: Microeconometrics Using Stata
ISBN: 1597180734 ISBN-13(EAN): 9781597180733
Издательство: Taylor&Francis
Рейтинг:
Цена: 12554.00 р.
Наличие на складе: Нет в наличии.

Описание: Updated to reflect Stata 11, this revised edition offers a complete and up-to-date survey of microeconometric methods available in Stata. The authors employ the new margins command, emphasizing both marginal effects at the means and average marginal effects. They also replace the xi command with factor variables, which allow you to specify indicator variables and interaction effects. Along with several new examples, this edition presents the new gmm command for generalized method of moments and nonlinear instrumental-variables estimation. In addition, the chapter on maximum likelihood estimation incorporates enhancements made to ml in Stata 11.

Adaptive and Natural Computing Algorithms

Автор: Bernadete Ribeiro; Rudolf F. Albrecht; Andrej Dobn
Название: Adaptive and Natural Computing Algorithms
ISBN: 3211249346 ISBN-13(EAN): 9783211249345
Издательство: Springer
Рейтинг:
Цена: 29209.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The ICANNGA series of Conferences has been organised since 1993 and has a long history of promoting the principles and understanding of computational intelligence paradigms within the scientific community and is a reference for established workers in this area.

Natural Computing Algorithms

Автор: Anthony Brabazon; Michael O`Neill; Se?n McGarraghy
Название: Natural Computing Algorithms
ISBN: 3662501163 ISBN-13(EAN): 9783662501160
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Introduction.- Introduction to Evolutionary Computing.- Genetic Algorithms.- Extending the Genetic Algorithm.- Evolution Strategies and Evolutionary Programming.- Differential Evolution.- Genetic Programming.- Particle Swarm Algorithms.- Ant Algorithms.- Honeybee Algorithms.- Other Social Algorithms.- Bacterial Foraging Algorithms.- Neural Networks for Supervised Learning.- Neural Networks for Unsupervised Learning.- Neuroevolution.- Artificial Immune Systems.- An Introduction to Developmental and Grammatical Computing.- Grammar-Based and Developmental Genetic Programming.- Grammatical Evolution.- TAG3P and Developmental TAG3P.- Genetic Regulatory Networks.- An Introduction to Physics-Inspired Computing.- Physics-Inspired Computing Algorithms.- Quantum-Inspired Evolutionary Algorithms.- Plant-Inspired Algorithms.- Chemistry-Inspired Algorithms.- Conclusions.- References.- Index.

Adaptive and Natural Computing Algorithms

Автор: Ville Kolehmainen; Pekka Toivanen; Bartlomiej Beli
Название: Adaptive and Natural Computing Algorithms
ISBN: 3642049206 ISBN-13(EAN): 9783642049200
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The ICANNGA series of conferences has been organized since 1993 and has a long history of promoting the principles and understanding of computational intelligence paradigms within the scienti?c community. Originally ICANNGA stood for "International Conference on Arti?cial Neural Networks and Genetic Algorithms," but in 2005 the conference was renamed to "International C- ference on Adaptive and Natural Computing Algorithms," while keeping the acronymICANNGA.The?rstICANNGAconferencewasheldinInnsbruckA- tria (1993), then Al es in France (1995), Norwich in the UK (1997), Portoroz in Slovenia (1999), Prague in the Czech Republic (2001), Roanne in France (2003), CoimbrainPortugal(2005)andWarsawinPoland(2007).ContinuingthisEu- peantradition, the9thICANNGA washeldinKuopio, Finland(2009).Thevast majority of ICANNGA conferences is organized by and based at a university. Drawing on the experience of previous events and following the same g- eral model, ICANNGA 2009 combined plenary lectures and technical sessions. Apart from being a widely recognized conference, it enhanced the possibility to exchange opinions through lectures and discussions, provided a great oppor- nity to meet new colleagues, as well as to renew old friendships and to facilitate the possibilities for international collaborations. As previously, the conference proceedings are published in the Springer LNCS series.

Natural Computing Algorithms

Автор: Anthony Brabazon; Michael O`Neill; Se?n McGarraghy
Название: Natural Computing Algorithms
ISBN: 3662436302 ISBN-13(EAN): 9783662436301
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Natural Computing Algorithms

Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies

Автор: Kelleher John D., Macnamee Brian, D`Arcy Aoife
Название: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies
ISBN: 0262029448 ISBN-13(EAN): 9780262029445
Издательство: MIT Press
Рейтинг:
Цена: 13543.00 р.
Наличие на складе: Нет в наличии.

Описание:

A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.

Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context.

After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals.

Algorithms for Obstetrics and Gynaecology

Автор: Mukhopadhyay Sambit, Morris Edward, Arulkumaran Sa
Название: Algorithms for Obstetrics and Gynaecology
ISBN: 0199651396 ISBN-13(EAN): 9780199651399
Издательство: Oxford Academ
Рейтинг:
Цена: 7760.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Algorithms in Obstetrics and Gynaecology presents the core knowledge needed to tackle all situations in obstetrics and gynaecology, in a structured fashion. All algorithms are designed to support rapid decision making in the most clinically relevant situations to minimise the risks of a poor outcome.

New Algorithms, Architectures and Applications for Reconfigurable Computing

Автор: Patrick Lysaght; Wolfgang Rosenstiel
Название: New Algorithms, Architectures and Applications for Reconfigurable Computing
ISBN: 1441952640 ISBN-13(EAN): 9781441952646
Издательство: Springer
Рейтинг:
Цена: 26120.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: New Algorithms, Architectures and Applications for Reconfigurable Computing consists of a collection of contributions from the authors of some of the best papers from the Field Programmable Logic conference (FPL`03) and the Design and Test Europe conference (DATE`03).

Adaptive and Natural Computing Algorithms

Автор: Bartlomiej Beliczynski; Andrzej Dzielinski; Marcin
Название: Adaptive and Natural Computing Algorithms
ISBN: 3540715908 ISBN-13(EAN): 9783540715900
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The two volume set LNCS 4431 and LNCS 4432 constitutes the refereed proceedings of the 8th International Conference on Adaptive and Natural Computing Algorithms, ICANNGA 2007, held in Warsaw, Poland, in April 2007. The 178 revised full papers presented were carefully reviewed and selected from a total of 474 submissions.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия