Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

An Introduction to Quasisymmetric Schur Functions, Kurt Luoto; Stefan Mykytiuk; Stephanie van Willige


Варианты приобретения
Цена: 9083.00р.
Кол-во:
 о цене
Наличие: Отсутствует. Возможна поставка под заказ.

При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Kurt Luoto; Stefan Mykytiuk; Stephanie van Willige
Название:  An Introduction to Quasisymmetric Schur Functions
ISBN: 9781461472995
Издательство: Springer
Классификация:


ISBN-10: 1461472997
Обложка/Формат: Paperback
Страницы: 89
Вес: 0.16 кг.
Дата издания: 19.06.2013
Серия: SpringerBriefs in Mathematics
Язык: English
Размер: 234 x 156 x 6
Основная тема: Mathematics
Подзаголовок: Hopf Algebras, Quasisymmetric Functions, and Young Composition Tableaux
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: An Introduction to Quasisymmetric Schur Functions is aimed at researchers and graduate students in algebraic combinatorics. The goal of this monograph is twofold. The first goal is to provide a reference text for the basic theory of Hopf algebras, in particular the Hopf algebras of symmetric, quasisymmetric and noncommutative symmetric functions and connections between them.

The second goal is to give a survey of results with respect to an exciting new basis of the Hopf algebra of quasisymmetric functions, whose combinatorics is analogous to that of the renowned Schur functions.




The Schur Complement and Its Applications

Автор: Fuzhen Zhang
Название: The Schur Complement and Its Applications
ISBN: 0387242716 ISBN-13(EAN): 9780387242712
Издательство: Springer
Рейтинг:
Цена: 23058.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Describes the Schur complement as a rich and basic tool in mathematical research and applications and discusses many significant results that illustrate its power and fertility. This title covers such topics as historical development, basic properties, eigenvalue and singular value inequalities, closure properties, and applications in statistics.

k-Schur Functions and Affine Schubert Calculus

Автор: Thomas Lam; Luc Lapointe; Jennifer Morse; Anne Sch
Название: k-Schur Functions and Affine Schubert Calculus
ISBN: 1493949721 ISBN-13(EAN): 9781493949724
Издательство: Springer
Рейтинг:
Цена: 11878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book gives an introduction to the very active field of combinatorics of affine Schubert calculus, explains the current state of the art, and states the current open problems.

Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions

Автор: Stephen C. Milne
Название: Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions
ISBN: 1441952136 ISBN-13(EAN): 9781441952134
Издательство: Springer
Рейтинг:
Цена: 16070.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

The problem of representing an integer as a sum of squares of integers is one of the oldest and most significant in mathematics. It goes back at least 2000 years to Diophantus, and continues more recently with the works of Fermat, Euler, Lagrange, Jacobi, Glaisher, Ramanujan, Hardy, Mordell, Andrews, and others. Jacobi's elliptic function approach dates from his epic Fundamenta Nova of 1829. Here, the author employs his combinatorial/elliptic function methods to derive many infinite families of explicit exact formulas involving either squares or triangular numbers, two of which generalize Jacobi's (1829) 4 and 8 squares identities to 4n2 or 4n(n+1) squares, respectively, without using cusp forms such as those of Glaisher or Ramanujan for 16 and 24 squares. These results depend upon new expansions for powers of various products of classical theta functions. This is the first time that infinite families of non-trivial exact explicit formulas for sums of squares have been found.

The author derives his formulas by utilizing combinatorics to combine a variety of methods and observations from the theory of Jacobi elliptic functions, continued fractions, Hankel or Turanian determinants, Lie algebras, Schur functions, and multiple basic hypergeometric series related to the classical groups. His results (in Theorem 5.19) generalize to separate infinite families each of the 21 of Jacobi's explicitly stated degree 2, 4, 6, 8 Lambert series expansions of classical theta functions in sections 40-42 of the Fundamental Nova. The author also uses a special case of his methods to give a derivation proof of the two Kac and Wakimoto (1994) conjectured identities concerning representations of a positive integer by sums of 4n2 or 4n(n+1) triangular numbers, respectively. These conjectures arose in the study of Lie algebras and have also recently been proved by Zagier using modular forms. George Andrews says in a preface of this book, This impressive work will undoubtedly spur others both in elliptic functions and in modular forms to build on these wonderful discoveries.'

Audience: This research monograph on sums of squares is distinguished by its diversity of methods and extensive bibliography. It contains both detailed proofs and numerous explicit examples of the theory. This readable work will appeal to both students and researchers in number theory, combinatorics, special functions, classical analysis, approximation theory, and mathematical physics.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия