Описание: Presents an account of the theory of right focal point boundary value problems for differential and difference equations. This book includes topics such as existence and uniqueness, Picard`s method, quasilinearisation, necessary and sufficient conditions for right disfocality, right and eventual disfocalities, and Green`s functions.
Boundary Value Problems for Systems of Differential, Difference and Fractional Equations: Positive Solutions discusses the concept of a differential equation that brings together a set of additional constraints called the boundary conditions.
As boundary value problems arise in several branches of math given the fact that any physical differential equation will have them, this book will provide a timely presentation on the topic. Problems involving the wave equation, such as the determination of normal modes, are often stated as boundary value problems.
To be useful in applications, a boundary value problem should be well posed. This means that given the input to the problem there exists a unique solution, which depends continuously on the input. Much theoretical work in the field of partial differential equations is devoted to proving that boundary value problems arising from scientific and engineering applications are in fact well-posed.
Описание: With parallel treatment of smooth and non-smooth problems, this text on non-linear boundary value problems and related analysis has new material on Neumann problems involving non-homogeneous differential operators, seen here for the first time in book form.
Описание: With parallel treatment of smooth and non-smooth problems, this text on non-linear boundary value problems and related analysis has new material on Neumann problems involving non-homogeneous differential operators, seen here for the first time in book form.
Автор: Yakimov, A Название: Analytical Solution Methods for Boundary Value Problems ISBN: 0128042893 ISBN-13(EAN): 9780128042892 Издательство: Elsevier Science Рейтинг: Цена: 11620.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Analytical Solution Methods for Boundary Value Problems is an extensively revised, new English language edition of the original 2011 Russian language work, which provides deep analysis methods and exact solutions for mathematical physicists seeking to model germane linear and nonlinear boundary problems. Current analytical solutions of equations within mathematical physics fail completely to meet boundary conditions of the second and third kind, and are wholly obtained by the defunct theory of series. These solutions are also obtained for linear partial differential equations of the second order. They do not apply to solutions of partial differential equations of the first order and they are incapable of solving nonlinear boundary value problems.
Analytical Solution Methods for Boundary Value Problems attempts to resolve this issue, using quasi-linearization methods, operational calculus and spatial variable splitting to identify the exact and approximate analytical solutions of three-dimensional non-linear partial differential equations of the first and second order. The work does so uniquely using all analytical formulas for solving equations of mathematical physics without using the theory of series. Within this work, pertinent solutions of linear and nonlinear boundary problems are stated. On the basis of quasi-linearization, operational calculation and splitting on spatial variables, the exact and approached analytical solutions of the equations are obtained in private derivatives of the first and second order. Conditions of unequivocal resolvability of a nonlinear boundary problem are found and the estimation of speed of convergence of iterative process is given. On an example of trial functions results of comparison of the analytical solution are given which have been obtained on suggested mathematical technology, with the exact solution of boundary problems and with the numerical solutions on well-known methods.
Описание: Excepting Sections 1 and 3 in Chapter 1 and Sections 1 and 3 in Chapter 2, the material is new in comparison with any other book, representing research topics where the authors contributed.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru