Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Deep Belief Nets in C++ and Cuda C: Volume 1: Restricted Boltzmann Machines and Supervised Feedforward Networks, Masters Timothy


Варианты приобретения
Цена: 4191.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Masters Timothy
Название:  Deep Belief Nets in C++ and Cuda C: Volume 1: Restricted Boltzmann Machines and Supervised Feedforward Networks
ISBN: 9781484235904
Издательство: Springer
Классификация:


ISBN-10: 1484235908
Обложка/Формат: Paperback
Страницы: 219
Вес: 0.41 кг.
Дата издания: 02.06.2018
Язык: English
Издание: 1st ed.
Иллюстрации: 20 illustrations, color; 11 illustrations, black and white; viii, 170 p. 31 illus., 20 illus. in color.
Размер: 181 x 258 x 19
Читательская аудитория: General (us: trade)
Подзаголовок: Restricted boltzmann machines and supervised feedforward networks
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Discover the essential building blocks of the most common forms of deep belief networks. At each step this book provides intuitive motivation, a summary of the most important equations relevant to the topic, and concludes with highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards.
The first of three in a series on C++ and CUDA C deep learning and belief nets, Deep Belief Nets in C++ and CUDA C: Volume 1 shows you how the structure of these elegant models is much closer to that of human brains than traditional neural networks; they have a thought process that is capable of learning abstract concepts built from simpler primitives. As such, youll see that a typical deep belief net can learn to recognize complex patterns by optimizing millions of parameters, yet this model can still be resistant to overfitting.
All the routines and algorithms presented in the book are available in the code download, which also contains some libraries of related routines.

What You Will Learn

  • Employ deep learning using C++ and CUDA C
  • Work with supervised feedforward networks
  • Implement restricted Boltzmann machines
  • Use generative samplings
  • Discover why these are important

Who This Book Is For
Those who have at least a basic knowledge of neural networks and some prior programming experience, although some C++ and CUDA C is recommended.



ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия