Описание: This book presents recent advances on the design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization and their application in areas such as, intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems.
In this book a neural network learning method with type-2 fuzzy weight adjustment is proposed. The mathematical analysis of the proposed learning method architecture and the adaptation of type-2 fuzzy weights are presented. The proposed method is based on research of recent methods that handle weight adaptation and especially fuzzy weights.
The internal operation of the neuron is changed to work with two internal calculations for the activation function to obtain two results as outputs of the proposed method. Simulation results and a comparative study among monolithic neural networks, neural network with type-1 fuzzy weights and neural network with type-2 fuzzy weights are presented to illustrate the advantages of the proposed method.
The proposed approach is based on recent methods that handle adaptation of weights using fuzzy logic of type-1 and type-2. The proposed approach is applied to a cases of prediction for the Mackey-Glass (for ?=17) and Dow-Jones time series, and recognition of person with iris biometric measure. In some experiments, noise was applied in different levels to the test data of the Mackey-Glass time series for showing that the type-2 fuzzy backpropagation approach obtains better behavior and tolerance to noise than the other methods.
The optimization algorithms that were used are the genetic algorithm and the particle swarm optimization algorithm and the purpose of applying these methods was to find the optimal type-2 fuzzy inference systems for the neural network with type-2 fuzzy weights that permit to obtain the lowest prediction error.
Описание: This book covers hybrid intelligent systems using type-2 fuzzy logic and modular neural networks for pattern recognition applications. Includes basic theory, use of type-2 fuzzy models, optimization of type-2 fuzzy systems and modular neural networks and more.
Описание: This book presents recent advances on the design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization and their application in areas such as, intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems.
Описание: The techniquesused and combined in the proposed method are modular neural networks (MNNs)with a Granular Computing (GrC) approach, thus resulting in a new concept ofMNNs;
Описание: As technology continues to advance in today's global market, practitioners are targeting systems with significant levels of applicability and variance. Instrumentation is a multidisciplinary subject that provides a wide range of usage in several professional fields, specifically engineering. Instrumentation plays a key role in numerous daily processes and has seen substantial advancement in recent years. It is of utmost importance for engineering professionals to understand the modern developments of instruments and how they affect everyday life.
Advancements in Instrumentation and Control in Applied System Applications is a collection of innovative research on the methods and implementations of instrumentation in real-world practices including communication, transportation, and biomedical systems. While highlighting topics including smart sensor design, medical image processing, and atrial fibrillation, this book is ideally designed for researchers, software engineers, technologists, developers, scientists, designers, IT professionals, academicians, and post-graduate students seeking current research on recent developments within instrumentation systems and their applicability in daily life.
Описание: As technology continues to advance in today's global market, practitioners are targeting systems with significant levels of applicability and variance. Instrumentation is a multidisciplinary subject that provides a wide range of usage in several professional fields, specifically engineering. Instrumentation plays a key role in numerous daily processes and has seen substantial advancement in recent years. It is of utmost importance for engineering professionals to understand the modern developments of instruments and how they affect everyday life.
Advancements in Instrumentation and Control in Applied System Applications is a collection of innovative research on the methods and implementations of instrumentation in real-world practices including communication, transportation, and biomedical systems. While highlighting topics including smart sensor design, medical image processing, and atrial fibrillation, this book is ideally designed for researchers, software engineers, technologists, developers, scientists, designers, IT professionals, academicians, and post-graduate students seeking current research on recent developments within instrumentation systems and their applicability in daily life.
Автор: Goldberg Yoav Название: Neural Network Methods in Natural Language Processing ISBN: 1627052984 ISBN-13(EAN): 9781627052986 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 11504.00 р. Наличие на складе: Поставка под заказ.
Описание: Neural networks are a family of powerful machine learning models. This book focuses on the application of neural network models to natural language data. The first half of the book (Parts I and II) covers the basics of supervised machine learning and feed-forward neural networks, the basics of working with machine learning over language data, and the use of vector-based rather than symbolic representations for words. It also covers the computation-graph abstraction, which allows to easily define and train arbitrary neural networks, and is the basis behind the design of contemporary neural network software libraries.The second part of the book (Parts III and IV) introduces more specialized neural network architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-generation models, and attention-based models. These architectures and techniques are the driving force behind state-of-the-art algorithms for machine translation, syntactic parsing, and many other applications. Finally, we also discuss tree-shaped networks, structured prediction, and the prospects of multi-task learning.
Learn How to Apply Artificial Intelligence in Business
Over the years, machines have attained intelligence capabilities that were only known to man before. Self-driving cars and virtual assistants like Siri and Alexa are some of the examples of artificial intelligence in action in daily life.
For a business, artificial intelligence is important in increasing productivity, enhancing decision making and increasing profits. This book puts into perspective how artificial intelligence affects business.
With 14 comprehensive chapters, this book is the most detailed guide you will find on the internet on artificial intelligence for business.
Here is a rundown of what you learn:
How to get started with AI in your business
What benefits and impacts the use of AI will have in your business
How you can build and incorporate an AI strategy in your business
How machine learning and AI will enhance the competitiveness of your business
The best uses for AI in your business
The future of AI, especially for businesses
FAQ
Q: Who is this book suitable for?
A: This book is for business executives and students of business that want to be future proof. It will take you through the concepts of machine learning, artificial intelligence and deep learning and how you can use them to impact your business.
Q: At the end of this book, will I be able to implement AI in my business?
A: Yes. This book provides a step-by-step method on how you can develop machine learning and artificial intelligence projects for your business. Everything is covered: from developing a strategy to operationalizing ML and AI projects.
Grab your copy of this comprehensive guide to artificial intelligence for business and stand the test of time
Автор: Claudia I. Gonzalez; Patricia Melin; Juan R. Castr Название: Edge Detection Methods Based on Generalized Type-2 Fuzzy Logic ISBN: 3319539930 ISBN-13(EAN): 9783319539935 Издательство: Springer Рейтинг: Цена: 7685.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The proposed generalized type-2 fuzzy edge detection methods were tested with benchmark images and synthetic images, in a grayscale and color format. Another contribution in this book is that the generalized type-2 fuzzy edge detector method is applied in the preprocessing phase of a face rec-ognition system;
Автор: Skorohod Boris. A Название: Diffuse Algorithms for Neural and Neuro-Fuzzy Networks ISBN: 0128126094 ISBN-13(EAN): 9780128126097 Издательство: Elsevier Science Рейтинг: Цена: 15159.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Diffuse Algorithms for Neural and Neuro-Fuzzy Networks: With Applications in Control Engineering and Signal Processing presents new approaches to training neural and neuro-fuzzy networks. This book is divided into six chapters. Chapter 1 consists of plants models reviews, problems statements, and known results that are relevant to the subject matter of this book. Chapter 2 considers the RLS behavior on a finite interval. The theoretical results are illustrated by examples of solving problems of identification, control, and signal processing.
Properties of the bias, the matrix of second-order moments and the normalized average squared error of the RLS algorithm on a finite time interval are studied in Chapter 3. Chapter 4 deals with the problem of multilayer neural and neuro-fuzzy networks training with simultaneous estimation of the hidden and output layers parameters. The theoretical results are illustrated with the examples of pattern recognition, identification of nonlinear static, and dynamic plants.
Chapter 5 considers the estimation problem of the state and the parameters of the discrete dynamic plants in the absence of a priori statistical information about initial conditions or its incompletion. The Kalman filter and the extended Kalman filter diffuse analogues are obtained. Finally, Chapter 6 provides examples of the use of diffuse algorithms for solving problems in various engineering applications. This book is ideal for researchers and graduate students in control, signal processing, and machine learning.
Описание: Provides an in-depth and even treatment of the three pillars of computational intelligence and how they relate to one another This book covers the three fundamental topics that form the basis of computational intelligence: neural networks, fuzzy systems, and evolutionary computation.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru