Описание: This monograph provides an accessible and comprehensive introduction to James Arthur’s invariant trace formula, a crucial tool in the theory of automorphic representations. It synthesizes two decades of Arthur’s research and writing into one volume, treating a highly detailed and often difficult subject in a clearer and more uniform manner without sacrificing any technical details.
The book begins with a brief overview of Arthur’s work and a proof of the correspondence between GL(n) and its inner forms in general. Subsequent chapters develop the invariant trace formula in a form fit for applications, starting with Arthur’s proof of the basic, non-invariant trace formula, followed by a study of the non-invariance of the terms in the basic trace formula, and, finally, an in-depth look at the development of the invariant formula. The final chapter illustrates the use of the formula by comparing it for G’ = GL(n) and its inner form G< and for functions with matching orbital integrals.
Arthur’s Invariant Trace Formula and Comparison of Inner Forms will appeal to advanced graduate students, researchers, and others interested in automorphic forms and trace formulae. Additionally, it can be used as a supplemental text in graduate courses on representation theory.
Описание: It also includes the most recent developments on other areas of mathematics including algebra and geometry.Lie group representation theory and harmonic analysis on Lie groups and on their homogeneous spaces form a significant and important area of mathematical research.
Автор: Travaglini Название: Number Theory, Fourier Analysis and Geometric Discrepancy ISBN: 1107619858 ISBN-13(EAN): 9781107619852 Издательство: Cambridge Academ Рейтинг: Цена: 6019.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Geometric discrepancy theory is a rapidly growing modern field. This book provides a complete introduction to the topic with exposition based on classical number theory and Fourier analysis, but assuming no prior knowledge of either. Ideal as a guide to the subject for advanced undergraduate or beginning graduate students.
Описание: Following the method developed by Waldspurger and Beuzart-Plessis in their proofs of the local Gan-Gross-Prasad conjecture, the author is able to prove the geometric side of a local relative trace formula for the Ginzburg-Rallis model.
Автор: M?ller Название: Families of Automorphic Forms and the Trace Formula ISBN: 3319414224 ISBN-13(EAN): 9783319414225 Издательство: Springer Рейтинг: Цена: 23058.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Featuring the work of twenty-three internationally-recognized experts, this volume explores the trace formula, spectra of locally symmetric spaces, p-adic families, and other recent techniques from harmonic analysis and representation theory.
Each peer-reviewed submission in this volume, based on the Simons Foundation symposium on families of automorphic forms and the trace formula held in Puerto Rico in January-February 2014, is the product of intensive research collaboration by the participants over the course of the seven-day workshop. The goal of each session in the symposium was to bring together researchers with diverse specialties in order to identify key difficulties as well as fruitful approaches being explored in the field. The respective themes were counting cohomological forms, p-adic trace formulas, Hecke fields, slopes of modular forms, and orbital integrals.
Автор: A. Good Название: Local Analysis of Selberg`s Trace Formula ISBN: 3540127135 ISBN-13(EAN): 9783540127130 Издательство: Springer Рейтинг: Цена: 3492.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Dennis A. Hejhal Название: The Selberg Trace Formula for PSL (2,R) ISBN: 3540079882 ISBN-13(EAN): 9783540079880 Издательство: Springer Рейтинг: Цена: 3766.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Finally the general Selberg trace formula is deduced easily from the properties of the Selberg zeta-function: this is similar to the procedure in analytic number theory where the explicit formulae are deduced from the properties of the Riemann zeta-function.
Автор: Matousek, Jiri Название: Geometric discrepancy ISBN: 3642039413 ISBN-13(EAN): 9783642039416 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: What is the "most uniform" way of distributing n points in the unit square? This book is an accessible and lively introduction to the area of geometric discrepancy theory, with numerous exercises and illustrations. In separate, more specialized parts, it also provides a comprehensive guide to recent research.
Автор: Edmund Hlawka; Charles Thomas; Johannes Schoi?enge Название: Geometric and Analytic Number Theory ISBN: 3540520163 ISBN-13(EAN): 9783540520160 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Based on lectures given by Professor Hlawka, this book covers diophantine approximation, uniform distribution of numbers, geometry of numbers and analytic numbers theory.
Автор: Galina Filipuk; Yoshishige Haraoka; S?awomir Micha Название: Analytic, Algebraic and Geometric Aspects of Differential Equations ISBN: 3319528416 ISBN-13(EAN): 9783319528410 Издательство: Springer Рейтинг: Цена: 22359.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Preface.- An introduction to Dunkl theory and its analytic aspects.- Holonomic Systems.- Sub-Riemannian geometry and hypoelliptic operators.- Asymptotic analysis and summability of formal power series.- WKB analysis and Stokes geometry of differential equations.- Transcendental Meromorphic Solutions of P34and Small Targets.- Towards the convergence of generalized power series solutions of algebraic ODEs.- Connection problem for regular holonomic systems in several variables.- On k-summability of formal solutions for certain higher order partial differential operators with polynomial coefficients.- On Stokes phenomena for the alternate discrete PI equation.- Flat structures and algebraic solutions toPainlevй VI equation.- Relation of Semi-classical orthogonal polynomials to General Schlesinger systems via Twistor theory.- Some notes on the multi-level Gevrey solutions of singularly perturbed linear partial differential equations.- Reducibility of hypergeometric equations.- Parametric Borel summability of partial differential equations of irregular singular type.
Автор: Travaglini Название: Number Theory, Fourier Analysis and Geometric Discrepancy ISBN: 1107044030 ISBN-13(EAN): 9781107044036 Издательство: Cambridge Academ Рейтинг: Цена: 20275.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Geometric discrepancy theory is a rapidly growing modern field. This book provides a complete introduction to the topic with exposition based on classical number theory and Fourier analysis, but assuming no prior knowledge of either. Ideal as a guide to the subject for advanced undergraduate or beginning graduate students.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru