Автор: Bullard Brittany Название: Style and Statistics: The Art of Retail Analytics ISBN: 1119270316 ISBN-13(EAN): 9781119270317 Издательство: Wiley Рейтинг: Цена: 6018.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A non-technical guide to leveraging retail analytics for personal and competitive advantage Style & Statistics is a real-world guide to analytics in retail.
Автор: Corea Название: Big Data Analytics: A Management Perspective ISBN: 3319389912 ISBN-13(EAN): 9783319389912 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is about innovation, big data, and data science seen from a business perspective. Big data is a buzzword nowadays, and there is a growing necessity within practitioners to understand better the phenomenon, starting from a clear stated definition. This book aims to be a starting reading for executives who want (and need) to keep the pace with the technological breakthrough introduced by new analytical techniques and piles of data. Common myths about big data will be explained, and a series of different strategic approaches will be provided. By browsing the book, it will be possible to learn how to implement a big data strategy and how to use a maturity framework to monitor the progress of the data science team, as well as how to move forward from one stage to the next. Crucial challenges related to big data will be discussed, where some of them are more general - such as ethics, privacy, and ownership – while others concern more specific business situations (e.g., initial public offering, growth strategies, etc.). The important matter of selecting the right skills and people for an effective team will be extensively explained, and practical ways to recognize them and understanding their personalities will be provided. Finally, few relevant technological future trends will be acknowledged (i.e., IoT, Artificial intelligence, blockchain, etc.), especially for their close relation with the increasing amount of data and our ability to analyse them faster and more effectively.
Автор: Guller, Mohammed Название: Big data analytics with spark ISBN: 1484209656 ISBN-13(EAN): 9781484209653 Издательство: Springer Рейтинг: Цена: 5309.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Big Data Analytics with Spark is a step-by-step guide for learning Spark, which is an open-source fast and general-purpose cluster computing framework for large-scale data analysis.
Автор: Wolfgang Karl H?rdle; Henry Horng-Shing Lu; Xiaoto Название: Handbook of Big Data Analytics ISBN: 3319182838 ISBN-13(EAN): 9783319182834 Издательство: Springer Рейтинг: Цена: 39130.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Addressing a broad range of big data analytics in cross-disciplinary applications, this essential handbook focuses on the statistical prospects offered by recent developments in this field. To do so, it covers statistical methods for high-dimensional problems, algorithmic designs, computation tools, analysis flows and the software-hardware co-designs that are needed to support insightful discoveries from big data. The book is primarily intended for statisticians, computer experts, engineers and application developers interested in using big data analytics with statistics. Readers should have a solid background in statistics and computer science.
Автор: Boris Deliba?i?; Jorge E. Hern?ndez; Jason Papatha Название: Decision Support Systems V – Big Data Analytics for Decision Making ISBN: 3319185322 ISBN-13(EAN): 9783319185323 Издательство: Springer Рейтинг: Цена: 5590.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: 'Big Data' Decision Making Use Cases.- The Roles of Big Data in the Decision-Support Process: An Empirical Investigation.- Cloud Enabled Big Data Business Platform for Logistics Services: A Research and Development Agenda.- Making Sense of Governmental Activities Over Social Media: A Data-Driven Approach.- Data-Mining and Expert Models for Predicting Injury Risk in Ski Resorts.- The Effects of Performance Ratios in Predicting Corporate Bankruptcy: The Italian Case.- A Tangible Collaborative Decision Support System for Various Variants of the Vehicle Routing Problem.- Decision Support Model for Participatory Management of Water Resource.- Modeling Interactions Among Criteria in MCDM Methods: A Review.
Автор: Hsu, Hui-Huang Название: Big Data Analytics for Sensor-Network Collected Intelligence ISBN: 0128093935 ISBN-13(EAN): 9780128093931 Издательство: Elsevier Science Рейтинг: Цена: 15159.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Big Data Analytics for Sensor-Network Collected Intelligence explores state-of-the-art methods for using advanced ICT technologies to perform intelligent analysis on sensor collected data. The book shows how to develop systems that automatically detect natural and human-made events, how to examine people's behaviors, and how to unobtrusively provide better services.
It begins by exploring big data architecture and platforms, covering the cloud computing infrastructure and how data is stored and visualized. The book then explores how big data is processed and managed, the key security and privacy issues involved, and the approaches used to ensure data quality.
In addition, readers will find a thorough examination of big data analytics, analyzing statistical methods for data analytics and data mining, along with a detailed look at big data intelligence, ubiquitous and mobile computing, and designing intelligence system based on context and situation.
Indexing: The books of this series are submitted to EI-Compendex and SCOPUS
Contains contributions from noted scholars in computer science and electrical engineering from around the globe
Provides a broad overview of recent developments in sensor collected intelligence
Edited by a team comprised of leading thinkers in big data analytics
Автор: Gunter Wallner Название: Data Analytics Applications in Gaming and Entertainment ISBN: 1138104434 ISBN-13(EAN): 9781138104433 Издательство: Taylor&Francis Рейтинг: Цена: 16078.00 р. Наличие на складе: Поставка под заказ.
Описание: Over the last decade big data and data mining has received growing interest and importance in game production to process and draw actionable insights from large volumes of player-related data in order to inform game design, to ensure customer satisfaction, to maximize revenues, and to drive technical innovation.
Автор: Simon Walkowiak Название: Big Data Analytics with R ISBN: 1786466457 ISBN-13(EAN): 9781786466457 Издательство: Неизвестно Рейтинг: Цена: 11217.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Utilize R to uncover hidden patterns in your Big Data About This Book Perform computational analyses on Big Data to generate meaningful results Get a practical knowledge of R programming language while working on Big Data platforms like Hadoop, Spark, H2O and SQL/NoSQL databases, Explore fast, streaming, and scalable data analysis with the most cutting-edge technologies in the market Who This Book Is For This book is intended for Data Analysts, Scientists, Data Engineers, Statisticians, Researchers, who want to integrate R with their current or future Big Data workflows. It is assumed that readers have some experience in data analysis and understanding of data management and algorithmic processing of large quantities of data, however they may lack specific skills related to R. What You Will Learn Learn about current state of Big Data processing using R programming language and its powerful statistical capabilities Deploy Big Data analytics platforms with selected Big Data tools supported by R in a cost-effective and time-saving manner Apply the R language to real-world Big Data problems on a multi-node Hadoop cluster, e.g. electricity consumption across various socio-demographic indicators and bike share scheme usage Explore the compatibility of R with Hadoop, Spark, SQL and NoSQL databases, and H2O platform In Detail Big Data analytics is the process of examining large and complex data sets that often exceed the computational capabilities. R is a leading programming language of data science, consisting of powerful functions to tackle all problems related to Big Data processing. The book will begin with a brief introduction to the Big Data world and its current industry standards. With introduction to the R language and presenting its development, structure, applications in real world, and its shortcomings. Book will progress towards revision of major R functions for data management and transformations. Readers will be introduce to Cloud based Big Data solutions (e.g. Amazon EC2 instances and Amazon RDS, Microsoft Azure and its HDInsight clusters) and also provide guidance on R connectivity with relational and non-relational databases such as MongoDB and HBase etc. It will further expand to include Big Data tools such as Apache Hadoop ecosystem, HDFS and MapReduce frameworks. Also other R compatible tools such as Apache Spark, its machine learning library Spark MLlib, as well as H2O. Style and approach This book will serve as a practical guide to tackling Big Data problems using R programming language and its statistical environment. Each section of the book will present you with concise and easy-to-follow steps on how to process, transform and analyse large data sets."
Автор: Wong Название: Big Data Analytics in Genomics ISBN: 3319412787 ISBN-13(EAN): 9783319412788 Издательство: Springer Рейтинг: Цена: 23757.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
This contributed volume explores the emerging intersection between big data analytics and genomics. Recent sequencing technologies have enabled high-throughput sequencing data generation for genomics resulting in several international projects which have led to massive genomic data accumulation at an unprecedented pace. To reveal novel genomic insights from this data within a reasonable time frame, traditional data analysis methods may not be sufficient or scalable, forcing the need for big data analytics to be developed for genomics. The computational methods addressed in the book are intended to tackle crucial biological questions using big data, and are appropriate for either newcomers or veterans in the field.
This volume offers thirteen peer-reviewed contributions, written by international leading experts from different regions, representing Argentina, Brazil, China, France, Germany, Hong Kong, India, Japan, Spain, and the USA. In particular, the book surveys three main areas: statistical analytics, computational analytics, and cancer genome analytics. Sample topics covered include: statistical methods for integrative analysis of genomic data, computation methods for protein function prediction, and perspectives on machine learning techniques in big data mining of cancer. Self-contained and suitable for graduate students, this book is also designed for bioinformaticians, computational biologists, and researchers in communities ranging from genomics, big data, molecular genetics, data mining, biostatistics, biomedical science, cancer research, medical research, and biology to machine learning and computer science. Readers will find this volume to be an essential read for appreciating the role of big data in genomics, making this an invaluable resource for stimulating further research on the topic.
Автор: Pyne Название: Big Data Analytics ISBN: 8132236262 ISBN-13(EAN): 9788132236269 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book has a collection of articles written by Big Data experts to describe some of the cutting-edge methods and applications from their respective areas of interest, and provides the reader with a detailed overview of the field of Big Data Analytics as it is practiced today. The chapters cover technical aspects of key areas that generate and use Big Data such as management and finance; medicine and healthcare; genome, cytome and microbiome; graphs and networks; Internet of Things; Big Data standards; bench-marking of systems; and others. In addition to different applications, key algorithmic approaches such as graph partitioning, clustering and finite mixture modelling of high-dimensional data are also covered. The varied collection of themes in this volume introduces the reader to the richness of the emerging field of Big Data Analytics.
Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.
Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.
Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.
It contains
Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.
Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
Includes open-access online courses that introduce practical applications of the material in the book
Автор: Raj & Chandra Deka Название: Cloud Infrastructures For Big Data Analytics ISBN: 1466658649 ISBN-13(EAN): 9781466658646 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 50312.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Clouds are being positioned as the next-generation consolidated, centralised, yet federated IT infrastructure for hosting all kinds of IT platforms and for deploying, maintaining, and managing a wider variety of personal, as well as professional, applications and services.Cloud Infrastructures for Big Data Analytics focuses exclusively on the topic of cloud-sponsored big data analytics for creating flexible and futuristic organisations. This book helps researchers and practitioners, as well as business entrepreneurs, to make informed decisions and consider appropriate action to simplify and streamline the arduous journey towards smarter enterprises.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru