Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Monetizing Machine Learning: Quickly Turn Python ML Ideas Into Web Applications on the Serverless Cloud, Amunategui Manuel, Roopaei Mehdi


Варианты приобретения
Цена: 10480.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Amunategui Manuel, Roopaei Mehdi
Название:  Monetizing Machine Learning: Quickly Turn Python ML Ideas Into Web Applications on the Serverless Cloud
ISBN: 9781484238721
Издательство: Springer
Классификация:





ISBN-10: 1484238729
Обложка/Формат: Paperback
Страницы: 482
Вес: 0.90 кг.
Дата издания: 09.12.2018
Язык: English
Издание: 1st ed.
Иллюстрации: 319 illustrations, black and white; xli, 482 p. 319 illus.
Размер: 180 x 253 x 33
Читательская аудитория: Professional & vocational
Подзаголовок: Quickly turn python ml ideas into web applications on the serverless cloud
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание:

Take your Python machine learning ideas and create serverless web applications accessible by anyone with an Internet connection. Some of the most popular serverless cloud providers are covered in this book--Amazon, Microsoft, Google, and PythonAnywhere.

You will work through a series of common Python data science problems in an increasing order of complexity. The practical projects presented in this book are simple, clear, and can be used as templates to jump-start many other types of projects. You will learn to create a web application around numerical or categorical predictions, understand the analysis of text, create powerful and interactive presentations, serve restricted access to data, and leverage web plugins to accept credit card payments and donations. You will get your projects into the hands of the world in no time.

Each chapter follows three steps: modeling the right way, designing and developing a local web application, and deploying onto a popular and reliable serverless cloud provider. You can easily jump to or skip particular topics in the book. You also will have access to Jupyter notebooks and code repositories for complete versions of the code covered in the book.

What Youll Learn

  • Extend your machine learning models using simple techniques to create compelling and interactive web dashboards
  • Leverage the Flask web framework for rapid prototyping of your Python models and ideas
  • Create dynamic content powered by regression coefficients, logistic regressions, gradient boosting machines, Bayesian classifications, and more
  • Harness the power of TensorFlow by exporting saved models into web applications
  • Create rich web dashboards to handle complex real-time user input with JavaScript and Ajax to yield interactive and tailored content
  • Create dashboards with paywalls to offer subscription-based access
  • Access API data such as Google Maps, OpenWeather, etc.
  • Apply different approaches to make sense of text data and return customized intelligence
  • Build an intuitive and useful recommendation site to add value to users and entice them to keep coming back
  • Utilize the freemium offerings of Google Analytics and analyze the results
  • Take your ideas all the way to your customers plate using the top serverless cloud providers

Who This Book Is For

Those with some programming experience with Python, code editing, and access to an interpreter in working order. The book is geared toward entrepreneurs who want to get their ideas onto the web without breaking the bank, small companies without an IT staff, students wanting exposure and training, and for all data science professionals ready to take things to the next level.


Дополнительное описание: Chapter 1 Introduction to Serverless Technologies.- Chapter 2 Client-Side Intelligence using Regression Coefficients on Azure.- Chapter 3 Real-Time Intelligence with Logistic Regression on GCP.- Chapter 4 Pre-Trained Intelligence with Gradient Boosting Ma



ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия