Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Foundations of Machine Learning, 2 ed., Mohri Mehryar, Rostamizadeh Afshin, Talwalkar Ameet


Варианты приобретения
Цена: 12697.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: Есть  
При оформлении заказа до: 2025-07-12
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Mohri Mehryar, Rostamizadeh Afshin, Talwalkar Ameet
Название:  Foundations of Machine Learning, 2 ed.
Перевод названия: Мехриар Мори, Афшин Ростамизаде, Амит Талвалкар: Основы компьютерного обучения
ISBN: 9780262039406
Издательство: MIT Press
Классификация:
ISBN-10: 0262039400
Обложка/Формат: Hardcover
Страницы: 504
Вес: 1.27 кг.
Дата издания: 25.12.2018
Серия: Adaptive computation and machine learning series
Язык: English
Издание: Second edition
Иллюстрации: 64 color illus., 35 b 99 illustrations, unspecified; 64 color illus., 35 b 99 illustrations, unspecified
Размер: 186 x 236 x 26
Читательская аудитория: Tertiary education (us: college)
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: США
Описание:

A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms.

This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics.

Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVM); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes aoffer dditional material including concise probability review.

This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.




ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия