Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

The Periodic Unfolding Method: Theory and Applications to Partial Differential Problems, Cioranescu Doina, Damlamian Alain, Griso Georges


Варианты приобретения
Цена: 23757.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Cioranescu Doina, Damlamian Alain, Griso Georges
Название:  The Periodic Unfolding Method: Theory and Applications to Partial Differential Problems
ISBN: 9789811330315
Издательство: Springer
Классификация:




ISBN-10: 981133031X
Обложка/Формат: Hardcover
Страницы: 513
Вес: 0.92 кг.
Дата издания: 16.12.2018
Серия: Series in contemporary mathematics
Язык: English
Издание: 1st ed. 2018
Иллюстрации: 1 illustrations, black and white; xv, 515 p. 1 illus.
Размер: 234 x 156 x 30
Читательская аудитория: Professional & vocational
Подзаголовок: Theory and applications to partial differential problems
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This is the first book on the subject of the periodic unfolding method (originally called ?clatement p?riodique in French), which was originally developed to clarify and simplify many questions arising in the homogenization of PDEs. It has since led to the solution of some open problems. Written by the three mathematicians who developed the method, the book presents both the theory as well as numerous examples of applications for partial differential problems with rapidly oscillating coefficients: in fixed domains (Part I), in periodically perforated domains (Part II), and in domains with small holes generating a strange term (Part IV). The method applies to the case of multiple microscopic scales (with finitely many distinct scales) which is connected to partial unfolding (also useful for evolution problems). This is discussed in the framework of oscillating boundaries (Part III). A detailed example of its application to linear elasticity is presented in the case of thin elastic plates (Part V). Lastly, a complete determination of correctors for the model problem in Part I is obtained (Part VI). This book can be used as a graduate textbook to introduce the theory of homogenization of partial differential problems, and is also a must for researchers interested in this field.
Дополнительное описание: Unfolding operators in fixed domains.- Advanced topics for unfolding.- Homogenization in fixed domains.- Unfolding operators in perforated domains.- Homogenization in perforated domains.- A Stokes problem in a partially porous medium.- Partial unfolding:



Introduction to second order partial differential equations, an: classical and variational solutions

Автор: Cioranescu, Doina (univ Pierre Et Marie Curie (paris 6), France) Donato, Patrizia (univ De Rouen, France) Roque, Marian P (univ Of The Philippines Dil
Название: Introduction to second order partial differential equations, an: classical and variational solutions
ISBN: 9813229179 ISBN-13(EAN): 9789813229174
Издательство: World Scientific Publishing
Рейтинг:
Цена: 10930.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

The book extensively introduces classical and variational partial differential equations (PDEs) to graduate and post-graduate students in Mathematics. The topics, even the most delicate, are presented in a detailed way. The book consists of two parts which focus on second order linear PDEs. Part I gives an overview of classical PDEs, that is, equations which admit strong solutions, verifying the equations pointwise. Classical solutions of the Laplace, heat, and wave equations are provided. Part II deals with variational PDEs, where weak (variational) solutions are considered. They are defined by variational formulations of the equations, based on Sobolev spaces. A comprehensive and detailed presentation of these spaces is given. Examples of variational elliptic, parabolic, and hyperbolic problems with different boundary conditions are discussed.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия