Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.
Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.
Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.
It contains
Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.
Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
Includes open-access online courses that introduce practical applications of the material in the book
Описание: This book constitutes the thoroughly refereed post-workshop proceedings at PAKDD Workshops 2016, held in conjunction with PAKDD, the 20th Pacific-Asia Conference on Knowledge Discovery and Data Mining in Auckland, New Zealand, in April 2016. The 23 revised papers presented were carefully reviewed and selected from 38 submissions.
Автор: Wen-Chih Peng; Haixun Wang; James Bailey; Vincent Название: Trends and Applications in Knowledge Discovery and Data Mining ISBN: 3319131850 ISBN-13(EAN): 9783319131856 Издательство: Springer Рейтинг: Цена: 13416.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the refereed proceedings at PAKDD Workshops 2014, held in conjunction with the 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) held in Tainan, Taiwan, in May 2014. The 73 revised papers presented were carefully reviewed and selected from 179 submissions.
Автор: Mohadeseh Ganji; Lida Rashidi; Benjamin C. M. Fung Название: Trends and Applications in Knowledge Discovery and Data Mining ISBN: 3030045021 ISBN-13(EAN): 9783030045029 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the thoroughly refereed post-workshop proceedings at PAKDD Workshops 2018, held in conjunction with the 22nd Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2018, in Melbourne, Australia, in June 2018.The 32 revised papers presented were carefully reviewed and selected from 46 submissions. The workshops affiliated with PAKDD 2018 include: Workshop on Big Data Analytics for Social Computing, BDASC, Australasian Workshop on Machine Learning for Cyber-security, ML4Cyber, Workshop on Biologically-inspired Techniques for Knowledge Discovery and Data Mining, BDM, Pacific Asia Workshop on Intelligence and Security Informatics, PAISI, and Workshop on Data Mining for Energy Modeling and Optimization, DaMEMO.
Автор: U Kang; Ee-Peng Lim; Jeffrey Xu Yu; Yang-Sae Moon Название: Trends and Applications in Knowledge Discovery and Data Mining ISBN: 3319672738 ISBN-13(EAN): 9783319672731 Издательство: Springer Рейтинг: Цена: 7685.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The workshops affiliated with PAKDD 2017 include: Workshop on Machine Learning for Sensory Data Analysis (MLSDA), Workshop on Biologically Inspired Data Mining Techniques (BDM), Pacific Asia Workshop on Intelligence and Security Informatics (PAISI), and Workshop on Data Mining in Business Process Management (DM-BPM).
Автор: Xiao-Li Li; Tru Cao; Ee-Peng Lim; Zhi-Hua Zhou; Tu Название: Trends and Applications in Knowledge Discovery and Data Mining ISBN: 3319256599 ISBN-13(EAN): 9783319256597 Издательство: Springer Рейтинг: Цена: 6708.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the refereed proceedings at PAKDD Workshops 2015, held in conjunction with PAKDD, the 19th Pacific-Asia Conference on Knowledge Discovery and Data Mining in Ho Chi Minh City, Vietnam, in May 2015.
Автор: Leong Hou U.; Hady W. Lauw Название: Trends and Applications in Knowledge Discovery and Data Mining ISBN: 3030261417 ISBN-13(EAN): 9783030261412 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: 14th Pacific Asia Workshop on Intelligence and Security Informatics (PAISI 2019).- A Supporting Tool for IT System Security Specification Evaluation Based on ISO/IEC 15408 and ISO/IEC 18045.- An Investigation on Multi View based User Behavior towards Spam Detection in Social Networks.- A Cluster Ensemble Strategy for Asian Handicap Betting.- Designing an Integrated Intelligence Center: New Taipei City Police Department as an Example.- Early Churn User Classification in Social Networking Service Using Attention-based Long Short-Term Memory.- PAKDD 2019 Workshop on Weakly Supervised Learning: Progress and Future (WeL 2019).- Weakly Supervised Learning by a Confusion Matrix of Contexts.- Learning a Semantic Space for Modeling Images, Tags and Feelings in Cross-media Search.- Adversarial Active Learning in the Presence of Weak and Malicious Oracles.- The Most Related Knowledge First: A Progressive Domain Adaptation Method.- Learning Data Representation for Clustering (LDRC 2019).- Deep Architectures for Joint Clustering and Visualization with Self-Organizing Maps.- Deep cascade of extra trees.- Algorithms for an Efficient Tensor Biclustering.- Change point detetion in periodic panel data using a mixture-model-based approach.- The 8th Workshop on Biologically-inspired Techniques for Knowledge Discovery and Data Mining (BDM 2019).- Neural Network-Based Deep Encoding for Mixed-Attribute Data Classification.- Protein Complexes Detection Based on Deep Neural Network.- Predicting Auction Price of Vehicle License Plate with Deep Residual Learning.- Mining Multispectral Aerial Images for Automatic Detection of Strategic Bridge Locations for Disaster Relief Missions.- Chinese Word Segmentation with Feature Alignment.- Spike Sorting with Locally Weighted Co-association Matrix-based Spectral Clustering.- Label Distribution Learning Based Age-Invariant Face Recognition.- Overall Loss For Deep Neural Networks.- Sentiment Analysis Based on LSTM Architecture with Emoticon Attention.- Aspect Level Sentiment Analysis with Aspect Attention.- The 1st Pacific Asia Workshop on Deep Learning for Knowledge Transfer (DLKT 2019).- Transfer Channel Pruning for Compressing Deep Domain Adaptation Models.- A Heterogeneous Domain Adversarial Neural Network for Trans-Domain Behavioral Targeting.- Natural Language Business Intelligence Question Answering through SeqtoSeq Transfer Learning.- Robust Faster R-CNN: Increasing Robustness to Occlusions and multi-scale objects.- Effectively Representing Short Text via the Improved Semantic Feature Space Mapping.- Probabilistic Graphical Model Based Highly Scalable Directed Community Detection Algorithm.- Hilltop based recommendation in co-author networks.- Neural Variational Collaborative Filtering for Top-K Recommendation.
Temporal Convolutional Networks.-Transfer Learning.- Deep Generative Networks.- Literature Based Discovery.- Data Management.- Information Extraction.- Internet of Things.- Clustering.- Mixture Model.- EM Algorith.- Manifold Learning.- Recommender Systems.- Machine Learning.- Artificial Intelligence.- Natural Language Processing.- Neural Networks.
Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application.
This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas--from science and engineering, to medicine, academia and commerce.
Includes input by practitioners for practitioners
Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models
Contains practical advice from successful real-world implementations
Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions
Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications
Описание: Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner(R), Third Edition presents an applied approach to data mining and predictive analytics with clear exposition, hands-on exercises, and real-life case studies.
Описание: Provides everything readers need to know for applying the power of informatics to materials science There is a tremendous interest in materials informatics and application of data mining to materials science. This book is a one-stop guide to the latest advances in these emerging fields. Bridging the gap between materials science and informatics, it introduces readers to up-to-date data mining and machine learning methods. It also provides an overview of state-of-the-art software and tools. Case studies illustrate the power of materials informatics in guiding the experimental discovery of new materials. Materials Informatics: Methods, Tools and Applications is presented in two parts?Methodological Aspects of Materials Informatics and Practical Aspects and Applications. The first part focuses on developments in software, databases, and high-throughput computational activities. Chapter topics include open quantum materials databases; the ICSD database; open crystallography databases; and more. The second addresses the latest developments in data mining and machine learning for materials science. Its chapters cover genetic algorithms and crystal structure prediction; MQSPR modeling in materials informatics; prediction of materials properties; amongst others. -Bridges the gap between materials science and informatics -Covers all the known methodologies and applications of materials informatics -Presents case studies that illustrate the power of materials informatics in guiding the experimental quest for new materials -Examines the state-of-the-art software and tools being used today Materials Informatics: Methods, Tools and Applications is a must-have resource for materials scientists, chemists, and engineers interested in the methods of materials informatics.
Автор: Gunter Wallner Название: Data Analytics Applications in Gaming and Entertainment ISBN: 1138104434 ISBN-13(EAN): 9781138104433 Издательство: Taylor&Francis Рейтинг: Цена: 16078.00 р. Наличие на складе: Поставка под заказ.
Описание: Over the last decade big data and data mining has received growing interest and importance in game production to process and draw actionable insights from large volumes of player-related data in order to inform game design, to ensure customer satisfaction, to maximize revenues, and to drive technical innovation.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru