Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Self-Learning and Adaptive Algorithms for Business Applications: A Guide to Adaptive Neuro-Fuzzy Systems for Fuzzy Clustering Under Uncertainty Conditions, Zhengbing Hu, Yevgeniy V. Bodyanskiy, Oleksii Tyshchenko


Варианты приобретения
Цена: 9349.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до:
Ориентировочная дата поставки:
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Zhengbing Hu, Yevgeniy V. Bodyanskiy, Oleksii Tyshchenko
Название:  Self-Learning and Adaptive Algorithms for Business Applications: A Guide to Adaptive Neuro-Fuzzy Systems for Fuzzy Clustering Under Uncertainty Conditions
ISBN: 9781838671747
Издательство: Emerald
Классификация:


ISBN-10: 1838671749
Обложка/Формат: Paperback
Страницы: 120
Вес: 0.14 кг.
Дата издания: 25.06.2019
Серия: Economics/Business/Finance
Язык: English
Размер: 130 x 194 x 22
Читательская аудитория: Professional and scholarly
Ключевые слова: Algorithms & data structures,Neural networks & fuzzy systems,Research & development management, COMPUTERS / Computer Science,COMPUTERS / Information Technology,BUSINESS & ECONOMICS / Research & Development
Подзаголовок: A guide to adaptive neuro-fuzzy systems for fuzzy clustering under uncertainty conditions
Рейтинг:
Поставляется из: Англии
Описание: In this guide designed for researchers and students of computer science, readers will find a resource for how to apply methods that work on real-life problems to their challenging applications, and a go-to work that makes fuzzy clustering issues and aspects clear.


Fuzzy Sets, Rough Sets, Multisets and Clustering

Автор: Vicen? Torra; Anders Dahlbom; Yasuo Narukawa
Название: Fuzzy Sets, Rough Sets, Multisets and Clustering
ISBN: 3319475568 ISBN-13(EAN): 9783319475561
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Bringing together contributions by leading researchers in the field, it concretely addresses clustering, multisets, rough sets and fuzzy sets, as well as their applications in areas such as decision-making.The book is divided in four parts, the first of which focuses on clustering and classification.

Intuitionistic Fuzzy Aggregation and Clustering

Автор: Zeshui Xu
Название: Intuitionistic Fuzzy Aggregation and Clustering
ISBN: 3642436129 ISBN-13(EAN): 9783642436123
Издательство: Springer
Рейтинг:
Цена: 21661.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: An inclusive primer on intuitionistic fuzzy clustering algorithms, this volume covers priority theory and methods of intuitionistic preference relations. It also shows how fuzzy algorithms can be applied to practicalities such as supply-chain management.

Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications

Автор: Oscar Castillo; Patricia Melin; Janusz Kacprzyk
Название: Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications
ISBN: 3319710079 ISBN-13(EAN): 9783319710075
Издательство: Springer
Рейтинг:
Цена: 30745.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book comprises papers on diverse aspects of fuzzy logic, neural networks, and nature-inspired optimization meta-heuristics and their application in various areas such as intelligent control and robotics, pattern recognition, medical diagnosis, time series prediction and optimization of complex problems. The book is organized into seven main parts, each with a collection of papers on a similar subject. The first part presents new concepts and algorithms based on type-2 fuzzy logic for dynamic parameter adaptation in meta-heuristics. The second part discusses network theory and applications, and includes papers describing applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The third part addresses the theory and practice of meta-heuristics in different areas of application, while the fourth part describes diverse fuzzy logic applications in the control area, which can be considered as intelligent controllers. The next two parts explore applications in areas, such as time series prediction, and pattern recognition and new optimization and evolutionary algorithms and their applications respectively. Lastly, the seventh part addresses the design and application of different hybrid intelligent systems.

Dynamic Fuzzy Machine Learning

Автор: Li, Fanzhang / Zhang, Li / Zhang, Zhao
Название: Dynamic Fuzzy Machine Learning
ISBN: 3110518708 ISBN-13(EAN): 9783110518702
Издательство: Walter de Gruyter
Рейтинг:
Цена: 22439.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Machine learning is widely used for data analysis. Dynamic fuzzy data are one of the most difficult types of data to analyse in the field of big data, cloud computing, the Internet of Things, and quantum information. At present, the processing of this kind of data is not very mature. The authors carried out more than 20 years of research, and show in this book their most important results. The seven chapters of the book are devoted to key topics such as dynamic fuzzy machine learning models, dynamic fuzzy self-learning subspace algorithms, fuzzy decision tree learning, dynamic concepts based on dynamic fuzzy sets, semi-supervised multi-task learning based on dynamic fuzzy data, dynamic fuzzy hierarchy learning, examination of multi-agent learning model based on dynamic fuzzy logic. This book can be used as a reference book for senior college students and graduate students as well as college teachers and scientific and technical personnel involved in computer science, artificial intelligence, machine learning, automation, data analysis, mathematics, management, cognitive science, and finance. It can be also used as the basis for teaching the principles of dynamic fuzzy learning.

Advanced Fuzzy Systems Design and Applications

Автор: Yaochu Jin
Название: Advanced Fuzzy Systems Design and Applications
ISBN: 3790825204 ISBN-13(EAN): 9783790825206
Издательство: Springer
Рейтинг:
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Compared to heuristic fuzzy rules, fuzzy rules generated from data are able to extract more profound knowledge for more complex systems. This book presents a number of approaches to the generation of fuzzy rules from data, ranging from the direct fuzzy inference based to neural net- works and evolutionary algorithms based fuzzy rule generation.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия