Описание: In a new approach to possibilistic clustering, the sought clustering structure of the set is based directly on the formal definition of fuzzy cluster and possibilistic memberships are determined directly from the values of the pairwise similarity of objects.
Автор: Thomas Villmann; M. Biehl; Barbara Hammer; Michel Название: Similarity-Based Clustering ISBN: 3642018041 ISBN-13(EAN): 9783642018046 Издательство: Springer Рейтинг: Цена: 14365.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Recent Developments and Biomedical Applications. .
Описание: Preface.- On Some Facets of the Partition Set of a Finite Set.- Two Methods of Non-hierarchical Clustering.- Structure and Mathematical Representation of Data.- Ordinal and Metrical Analysis of the Resemblance Notion.- Comparing Attributes by a Probabilistic and Statistical Association I.- Comparing Attributes by a Probabilistic and Statistical Association II.- Comparing Objects or Categories Described by Attributes.- The Notion of "Natural" Class, Tools for its Interpretation. The Classifiability Concept.- Quality Measures in Clustering.- Building a Classification Tree.- Applying the LLA Method to Real Data.- Conclusion and Thoughts for Future Works
Автор: Seetha Hari, Murty M. Narasimha, Tripathy B. K. Название: Modern Technologies for Big Data Classification and Clustering ISBN: 1522528059 ISBN-13(EAN): 9781522528050 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 31324.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Data has increased due to the growing use of web applications and communication devices. It is necessary to develop new techniques of managing data in order to ensure adequate usage.Modern Technologies for Big Data Classification and Clustering is an essential reference source for the latest scholarly research on handling large data sets with conventional data mining and provide information about the new technologies developed for the management of large data. Featuring coverage on a broad range of topics such as text and web data analytics, risk analysis, and opinion mining, this publication is ideally designed for professionals, researchers, and students seeking current research on various concepts of big data analytics.Topics Covered:The many academic areas covered in this publication include, but are not limited to:Data visualizationDistributed Computing SystemsOpinion MiningPrivacy and securityRisk analysisSocial Network AnalysisText Data AnalyticsWeb Data Analytics
Автор: Francesco Masulli; Alfredo Petrosino; Stefano Rove Название: Clustering High--Dimensional Data ISBN: 3662485761 ISBN-13(EAN): 9783662485767 Издательство: Springer Рейтинг: Цена: 5590.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the proceedings of the International Workshop on Clustering High-Dimensional Data, CHDD 2012, held in Naples, Italy, in May 2012. and the most common approach to tackle dimensionality problems, namely, dimensionality reduction and its application in clustering.
Автор: Junjie Wu Название: Advances in K-means Clustering ISBN: 3642447570 ISBN-13(EAN): 9783642447570 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The K-means algorithm is commonly used in data mining and business intelligence. This award-winning research pioneers its application to the intricacies of `big data`, detailing a theoretical framework for aggregating and validating clusters with K-means.
Автор: Viattchenin Dmitri A Название: Heuristic Approach to Possibilistic Clustering: Algorithms a ISBN: 3642355358 ISBN-13(EAN): 9783642355356 Издательство: Springer Рейтинг: Цена: 19591.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: In a new approach to possibilistic clustering, the sought clustering structure of the set is based directly on the formal definition of fuzzy cluster and possibilistic memberships are determined directly from the values of the pairwise similarity of objects.
Автор: Ujjwal Maulik; Sanghamitra Bandyopadhyay; Anirban Название: Multiobjective Genetic Algorithms for Clustering ISBN: 3642439632 ISBN-13(EAN): 9783642439636 Издательство: Springer Рейтинг: Цена: 7680.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book covers clustering using multiobjective genetic algorithms, with extensive real-life application in data mining and bioinformatics. The authors offer instructions for relevant techniques, and demonstrate real-world applications in several disciplines.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru