Biomedical Image Analysis and Mining Techniques for Improved Health Outcomes, Wahiba Ben Abdessalem Karaa, Nilanjan Dey
Автор: K. Kamalanand, B. Thayumanavan, P. Mannar Jawahar Название: Computational Techniques for Dental Image Analysis ISBN: 1522562435 ISBN-13(EAN): 9781522562436 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 35402.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: With the technology innovations dentistry has witnessed in all its branches over the past three decades, the need for more precise diagnostic tools and advanced imaging methods has become mandatory across the industry. Recent advancements to imaging systems are playing an important role in efficient diagnoses, treatments, and surgeries.Computational Techniques for Dental Image Analysis provides innovative insights into computerized methods for automated analysis. The research presented within this publication explores pattern recognition, oral pathologies, and diagnostic processing. It is designed for dentists, professionals, medical educators, medical imaging technicians, researchers, oral surgeons, and students, and covers topics centered on easier assessment of complex cranio-facial tissues and the accurate diagnosis of various lesions at early stages.
Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.
Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.
Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.
It contains
Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.
Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
Includes open-access online courses that introduce practical applications of the material in the book
Introduction.- Indoor hygrothermal conditions.- Data mining techniques.- Case Study.- Application of data mining techniques.- Conclusions.
Автор: Samei Название: The Handbook of Medical Image Perception and Techniques ISBN: 1107424631 ISBN-13(EAN): 9781107424630 Издательство: Cambridge Academ Рейтинг: Цена: 12514.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Written with both the novice and researcher in mind, this state-of-the-art book reviews key issues and methods in medical image perception research. It provides a broad overview of medical image perception for newcomers to the field and experienced researchers, and will serve as a reference volume for years to come.
As data holdings get bigger and questions get harder, data scientists and analysts must focus on the systems, the tools and techniques, and the disciplined process to get the correct answer, quickly Whether you work within industry or government, this book will provide you with a foundation to successfully and confidently process large amounts of quantitative data.
Here are just a dozen of the many questions answered within these pages:
What does quantitative analysis of a system really mean?
What is a system?
What are big data and analystics?
How do you know your numbers are good?
What will the future data science environment look like?
How do you determine data provenance?
How do you gather and process information, and then organize, store, and synthesize it?
How does an organization implement data analytics?
Do you really need to think like a Chief Information Officer?
What is the best way to protect data?
What makes a good dashboard?
What is the relationship between eating ice cream and getting attacked by a shark?
The nine chapters in this book are arranged in three parts that address systems concepts in general, tools and techniques, and future trend topics. Systems concepts include contrasting open and closed systems, performing data mining and big data analysis, and gauging data quality. Tools and techniques include analyzing both continuous and discrete data, applying probability basics, and practicing quantitative analysis such as descriptive and inferential statistics. Future trends include leveraging the Internet of Everything, modeling Artificial Intelligence, and establishing a Data Analytics Support Office (DASO).
Many examples are included that were generated using common software, such as Excel, Minitab, Tableau, SAS, and Crystal Ball. While words are good, examples can sometimes be a better teaching tool. For each example included, data files can be found on the companion website. Many of the data sets are tied to the global economy because they use data from shipping ports, air freight hubs, largest cities, and soccer teams. The appendices contain more detailed analysis including the 10 T's for Data Mining, Million Row Data Audit (MRDA) Processes, Analysis of Rainfall, and Simulation Models for Evaluating Traffic Flow.
Описание: Churn prediction, recognition, and mitigation have become essential topics in various industries. As a means for forecasting and manageing risk, further research in this field can greatly assist companies in making informed decisions based on future possible scenarios.Developing Churn Models Using Data Mining Techniques and Social Network Analysis provides an in-depth analysis of attrition modeling relevant to business planning and management. Through its insightful and detailed explanation of best practices, tools, and theory surrounding churn prediction and the integration of analytics tools, this publication is especially relevant to managers, data specialists, business analysts, academicians, and upper-level students.
Автор: David Wilson; Swamy Laxminarayan Название: Handbook of Biomedical Image Analysis ISBN: 1489996494 ISBN-13(EAN): 9781489996497 Издательство: Springer Рейтинг: Цена: 53106.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Our goal is to develop automated methods for the segmentation of thr- dimensional biomedical images. Here, we describe the segmentation of c- focal microscopy images of bee brains (20 individuals) by registration to one or several atlas images. Registration is performed by a highly parallel imp- mentation of an entropy-based nonrigid registration algorithm using B-spline transformations. We present and evaluate different methods to solve the cor- spondence problem in atlas based registration. An image can be segmented by registering it to an individual atlas, an average atlas, or multiple atlases. When registering to multiple atlases, combining the individual segmentations into a ?nalsegmentationcanbeachievedbyatlasselection,ormulticlassi?erdecision fusion. Wedescribeallthesemethodsandevaluatethesegmentationaccuracies that they achieve by performing experiments with electronic phantoms as well as by comparing their outputs to a manual gold standard. The present work is focused on the mathematical and computational t- ory behind a technique for deformable image registration termed Hyperelastic Warping, and demonstration of the technique via applications in image regist- tion and strain measurement. The approach combines well-established prin- ples of nonlinear continuum mechanics with forces derived directly from thr- dimensional image data to achieve registration. The general approach does not require the de?nition of landmarks, ?ducials, or surfaces, although it can - commodate these if available. Representative problems demonstrate the robust and ?exible nature of the approach. Three-dimensional registration methods are introduced for registering MRI volumes of the pelvis and prostate. The chapter ?rst reviews the applications, xi xii Preface challenges, and previous methods of image registration in the prostate.
Описание: This book constitutes the refereed joint proceedings of the First International Workshop on Graphs in Biomedical Image Analysis, GRAIL 2017, the 6th International Workshop on Mathematical Foundations of Computational Anatomy, MFCA 2017, and the Third International Workshop on Imaging Genetics, MICGen 2017, held in conjunction with the 20th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2017, in Quebec City, QC, Canada, in September 2017.
The 7 full papers presented at GRAIL 2017, the 10 full papers presented at MFCA 2017, and the 5 full papers presented at MICGen 2017 were carefully reviewed and selected. The GRAIL papers cover a wide range of graph based medical image analysis methods and applications, including probabilistic graphical models, neuroimaging using graph representations, machine learning for diagnosis prediction, and shape modeling. The MFCA papers deal with theoretical developments in non-linear image and surface registration in the context of computational anatomy. The MICGen papers cover topics in the field of medical genetics, computational biology and medical imaging.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru