Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.
Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.
Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.
It contains
Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.
Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
Includes open-access online courses that introduce practical applications of the material in the book
Описание: Multidisciplinary Computational Intelligence Techniques: Applications in Business, Engineering, and Medicine explores the complex world of computational intelligence, which utilizes computational methodologies such as fuzzy logic systems, neural networks, and evolutionary computation for the purpose of managing and using data effectively and addressing complicated real-world problems. This publication brings together various segments of computational intelligence and its applications in the worlds of business, engineering, and medicine.
Описание: This book constitutes the proceedings of the Third International Conference on Computational Intelligence, Cyber Security, and Computational Models, ICC3 2017, which was held in Coimbatore, India, in December 2017. They were organized in topical sections named: computational intelligence; and computational models.
Описание: This book brings together academic scientists, professors, research scholars and students to share and disseminate information on knowledge and scientific research works related to computing, networking, and informatics to discuss the practical challenges encountered and the solutions adopted.
Автор: Bhattacharyya Siddhartha, Banerjee Pinaki, Majumdar Dipankar Название: Handbook of Research on Advanced Hybrid Intelligent Techniques and Applications ISBN: 1466694742 ISBN-13(EAN): 9781466694743 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 41580.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Conventional computational methods, and even the latest soft computing paradigms, often fall short in their ability to offer solutions to many real-world problems due to uncertainty, imprecision, and circumstantial data. Hybrid intelligent computing is a paradigm that addresses these issues to a considerable extent.The Handbook of Research on Advanced Research on Hybrid Intelligent Techniques and Applications highlights the latest research on various issues relating to the hybridization of artificial intelligence, practical applications, and best methods for implementation. Focusing on key interdisciplinary computational intelligence research dealing with soft computing techniques, pattern mining, data analysis, and computer vision, this book is relevant to the research needs of academics, IT specialists, and graduate-level students.
Автор: Chang Wen Chen; Zhu Li; Shiguo Lian Название: Intelligent Multimedia Communication: Techniques and Applications ISBN: 3642269435 ISBN-13(EAN): 9783642269431 Издательство: Springer Рейтинг: Цена: 22201.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book explores aspects of multimedia data, including fundamental knowledge and the latest key techniques, and also typical applications and open issues. Coverage includes present and future video coding standards, free-viewpoint TV techniques, and more.
A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.
Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context.
After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru