Контакты/Проезд
Доставка и Оплата
Помощь/Возврат
Корзина ()
Мои желания ()
История
Промокоды
Ваши заказы
+7(495) 980-12-10
пн-пт: 10-18 сб,вс: 11-18
shop@logobook.ru
Российская литература
Поиск книг
Поиск по списку ISBN
Расширенный поиск
Найти
Зарубежные издательства
Российские издательства
Авторы
|
Каталог книг
|
Издательства
|
Новинки
|
Учебная литература
|
Акции
|
Хиты
|
|
Войти
Регистрация
Забыли?
Deep Reinforcement Learning in Action, Zai Alexander, Brown Brandon
Варианты приобретения
Цена:
7918.00р.
Кол-во:
Наличие:
Поставка под заказ.
Есть в наличии на складе поставщика.
Склад Англия: Есть Склад Америка: Есть
При оформлении заказа до:
2025-08-04
Ориентировочная дата поставки:
Август-начало Сентября
Добавить в корзину
в Мои желания
Автор:
Zai Alexander, Brown Brandon
Название:
Deep Reinforcement Learning in Action
ISBN:
9781617295430
Издательство:
Manning Publications
Классификация:
Языки программирования и описания сценариев: общие сведения
Машинное обучение
ISBN-10: 1617295434
Обложка/Формат: Paperback
Страницы: 325
Вес: 0.65 кг.
Дата издания: 07.12.2019
Язык: English
Размер: 188 x 234 x 23
Читательская аудитория: Professional & vocational
Рейтинг:
Поставляется из: Англии
Описание: Summary
Humans learn best from feedback--we are encouraged to take actions that lead to positive results while deterred by decisions with negative consequences. This reinforcement process can be applied to computer programs allowing them to solve more complex problems that classical programming cannot.
Deep Reinforcement Learning in Action
teaches you the fundamental concepts and terminology of deep reinforcement learning, along with the practical skills and techniques youll need to implement it into your own projects.
Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
About the technology
Deep reinforcement learning AI systems rapidly adapt to new environments, a vast improvement over standard neural networks. A DRL agent learns like people do, taking in raw data such as sensor input and refining its responses and predictions through trial and error.
About the book
Deep Reinforcement Learning in Action
teaches you how to program AI agents that adapt and improve based on direct feedback from their environment. In this example-rich tutorial, youll master foundational and advanced DRL techniques by taking on interesting challenges like navigating a maze and playing video games. Along the way, youll work with core algorithms, including deep Q-networks and policy gradients, along with industry-standard tools like PyTorch and OpenAI Gym.
Whats inside
Building and training DRL networks
The most popular DRL algorithms for learning and problem solving
Evolutionary algorithms for curiosity and multi-agent learning
All examples available as Jupyter Notebooks
About the reader
For readers with intermediate skills in Python and deep learning.
About the author
Alexander Zai
is a machine learning engineer at Amazon AI.
Brandon Brown
is a machine learning and data analysis blogger.
Table of Contents
PART 1 - FOUNDATIONS
1. What is reinforcement learning?
2. Modeling reinforcement learning problems: Markov decision processes
3. Predicting the best states and actions: Deep Q-networks
4. Learning to pick the best policy: Policy gradient methods
5. Tackling more complex problems with actor-critic methods
PART 2 - ABOVE AND BEYOND
6. Alternative optimization methods: Evolutionary algorithms
7. Distributional DQN: Getting the full story
8.Curiosity-driven exploration
9. Multi-agent reinforcement learning
10. Interpretable reinforcement learning: Attention and relational models
11. In conclusion: A review and roadmap
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
Есть вопрос?
Политика конфиденциальности
Помощь
Дистрибьюторы издательства "Логосфера"
О компании
Представительство в Казахстане
Medpublishing.ru
В Контакте
В Контакте Мед
Мобильная версия