Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Beginning Azure Iot Edge Computing: Extending the Cloud to the Intelligent Edge, Jensen David


Варианты приобретения
Цена: 8384.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Jensen David
Название:  Beginning Azure Iot Edge Computing: Extending the Cloud to the Intelligent Edge
ISBN: 9781484245354
Издательство: Springer
Классификация:


ISBN-10: 1484245350
Обложка/Формат: Paperback
Страницы: 265
Вес: 0.50 кг.
Дата издания: 20.06.2019
Язык: English
Издание: 1st ed.
Иллюстрации: 145 illustrations, black and white; xix, 265 p. 145 illus.
Размер: 254 x 178 x 15
Читательская аудитория: Professional & vocational
Подзаголовок: Extending the cloud to the intelligent edge
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Use a step-by-step process to create and deploy your first Azure IoT Edge solution.Modern day developers and architects in today’s cloud-focused world must understand when it makes sense to leverage the cloud. Computing on the edge is a new paradigm for most people. The Azure IoT Edge platform uses many existing technologies that may be familiar to developers, but understanding how to leverage those technologies in an edge computing scenario can be challenging.Beginning Azure IoT Edge Computing demystifies computing on the edge and explains, through concrete examples and exercises, how and when to leverage the power of intelligent edge computing. It introduces the possibilities of intelligent edge computing using the Azure IoT Edge platform, and guides you through hands-on exercises to make edge computing approachable, understandable, and highly useful.Through user-friendlydiscussion you will not only understand how to build edge solutions, but also when to build them. By explaining some common solution patterns, the decision on when to use the cloud and when to avoid the cloud will become much clearer.What Youll LearnCreate and deploy Azure IoT Edge solutionsRecognize when to leverage the intelligent edge pattern and when to avoid itLeverage the available developer tooling to develop and debug IoT Edge solutionsKnow which off-the-shelf edge computing modules are availableBecome familiar with some of the lesser-known device protocols used in conjunction with edge computingUnderstand how to securely deploy and bootstrap an IoT Edge deviceExplore related topics such as containers and secure device provisioning
Who This Book Is For
Developers or architects who want to understand edge computing and when and where to use it. Readers should be familiar with C# or Python and have a high-level understanding of the Azure IoT platform.

Дополнительное описание: Chapter 1: Do I need an intelligent edge?.- Chapter 2: Azure IoT Edge Core Concepts.- Chapter 3: Azure IoT Edge Development Environment.- Chapter 4: Hello Edge.- Chapter 5: Developing and Debugging Edge Modules.- Chapter 6: Analytics on the Edge.- Chapter



Cloud Data Design, Orchestration, and Management Using Microsoft Azure: Master and Design a Solution Leveraging the Azure Data Platform

Автор: Diaz Francesco, Freato Roberto
Название: Cloud Data Design, Orchestration, and Management Using Microsoft Azure: Master and Design a Solution Leveraging the Azure Data Platform
ISBN: 1484236149 ISBN-13(EAN): 9781484236147
Издательство: Springer
Рейтинг:
Цена: 9083.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: 1 Overview of data architecture on Microsoft Azure Introduction Technologies: everyone touched in the book plus some other edge technologies just mentioned. We explain the scenarios of the book.This chapter will be written during the whole process, updating it with the relevant content of the scenarios developed in the chapters.
2 Working with Relational DBs on Azure Relational DBs scenarios Technologies: VMs, Backup, Storage, SQL Server DR and GEO-DR, (Oracle, MySQL)We would like to cover the best practices to deploy standard RDBMSs while using Azure VMs and networking.
3 Working with Azure SQL Database Azure DB scenarios Technologies: Azure SQL DB, Stretch DB, Database Pools, Sharding data, Migration from other RDBMSs to Azure SQL DBThis chapter is about the SQL Database PaaS, with some tricks for advanced usage. We cover the services and the connected services, how to scale with relational DBs and how to write multi-tenant applications.
4 Working with NoSQL alternatives NoSQL scenarios Technologies: Storage, DocumentDB, Redis, Azure SearchThis chapter enforces the polyglot persistence idea, where different technologies and data sources address different needs. The NoSQL alternatives can fill the gap of modern applications in terms of performance and feature set.
5 Orchestrate data with Azure Data Factory Integration scenarios Technologies: Azure Data FactoryIn this chapter we talk about integration of different data sources and advanced pipelines of data transformation. We explore some scenarios to lower the complexity of the Data Factory service and we see how to setup existing solutions to fit it.
6 Advanced analysis with Azure Data Lake Analysis scenarios Technologies: Data Lake Store/Analytics, U-SQLThis is the first chapter about ingestion of big data. This is focused on ingestion of native data, to be prepared, enriched and evaluated/analyzed in a second step.
7 Real-time Ingestion, Processing and Prediction Real-time scenarios Technologies: Machine Learning, Stream Analytics, Event HubThis is instead focused in ingestion of well-known and structured data with the aim to process it in real-time. In addition a step of prediction is added to react (in real time too) to certain events.
8 Working with Big Data with Azure Batch and Map/Reduce Big data scenarios Technologies: HDInsight, Hadoop, Spark, R Server, Storm, Azure BatchThis is the last chapter about Big Data, exploring the industry standard to perform data operations, while executing those engines on Azure.
9 APPENDIX (tbd yet, adding some of the topics below to one of the other chapter still has to be defined) Other Technologies: Azure Analysis Services (chapter 3?), Power BI (chapter 6?), Azure SQL DataWarehouse (chapter 6?), Azure Data Catalog (chapter 5?)Those technologies should fit the existing chapters, but we do not know where they best fit at the time being.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия