Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Statistical Inference Via Convex Optimization, Juditsky Anatoli, Nemirovski Arkadi


Варианты приобретения
Цена: 13939.00р.
Кол-во:
 о цене
Наличие: Отсутствует. Возможна поставка под заказ.

При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Juditsky Anatoli, Nemirovski Arkadi   (Анатолий Юдицкий)
Название:  Statistical Inference Via Convex Optimization
Перевод названия: Анатолий Юдицкий: Статистический вывод с помощью выпуклой оптимизации
ISBN: 9780691197296
Издательство: Wiley
Классификация:


ISBN-10: 0691197296
Обложка/Формат: Hardcover
Страницы: 632
Вес: 1.27 кг.
Дата издания: 07.04.2020
Серия: Princeton series in applied mathematics
Язык: English
Иллюстрации: 40 b/w illus.
Размер: 185 x 260 x 40
Читательская аудитория: Tertiary education (us: college)
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание:

This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization theory can be used to devise and analyze near-optimal statistical inferences.

Statistical Inference via Convex Optimization is an essential resource for optimization specialists who are new to statistics and its applications, and for data scientists who want to improve their optimization methods. Juditsky and Nemirovski provide the first systematic treatment of the statistical techniques that have arisen from advances in the theory of optimization. They focus on four well-known statistical problems--sparse recovery, hypothesis testing, and recovery from indirect observations of both signals and functions of signals--demonstrating how they can be solved more efficiently as convex optimization problems. The emphasis throughout is on achieving the best possible statistical performance. The construction of inference routines and the quantification of their statistical performance are given by efficient computation rather than by analytical derivation typical of more conventional statistical approaches. In addition to being computation-friendly, the methods described in this book enable practitioners to handle numerous situations too difficult for closed analytical form analysis, such as composite hypothesis testing and signal recovery in inverse problems.

Statistical Inference via Convex Optimization features exercises with solutions along with extensive appendixes, making it ideal for use as a graduate text.




ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия