Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Mining of Massive Datasets, Leskovec Jure


Варианты приобретения
Цена: 10771.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: Есть  Склад Америка: Есть  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября

Добавить в корзину
в Мои желания

Автор: Leskovec Jure   (Юре Лесковеч)
Название:  Mining of Massive Datasets
Перевод названия: Юре Лесковеч: Сбор массивных наборов данных
ISBN: 9781108476348
Издательство: Cambridge Academ
Классификация:




ISBN-10: 1108476341
Обложка/Формат: Hardcover
Страницы: 565
Вес: 1.24 кг.
Дата издания: 09.01.2020
Серия: Reference/Librarianship
Язык: English
Издание: 3 revised edition
Иллюстрации: Worked examples or exercises; 16 halftones, black and white; 60 line drawings, black and white
Размер: 249 x 180 x 30
Читательская аудитория: Tertiary education (us: college)
Ключевые слова: Databases,Data mining,Information theory,Knowledge management,Machine learning,Pattern recognition, COMPUTERS / Computer Vision & Pattern Recognition
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: Essential reading for students and practitioners, this book focuses on practical algorithms used to solve key problems in data mining, with exercises suitable for students from the advanced undergraduate level and beyond. This third edition includes new and extended coverage on decision trees, deep learning, and mining social-network graphs.


Compression Schemes for Mining Large Datasets

Автор: T. Ravindra Babu; M. Narasimha Murty; S.V. Subrahm
Название: Compression Schemes for Mining Large Datasets
ISBN: 1447170555 ISBN-13(EAN): 9781447170556
Издательство: Springer
Рейтинг:
Цена: 13275.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book addresses the challenges of data abstraction generation using the least number of database scans, compressing data through novel lossy and non-lossy schemes, and carrying out clustering and classification directly in the compressed domain.

Graphics of Large Datasets

Автор: Antony Unwin; Martin Theus; Heike Hofmann
Название: Graphics of Large Datasets
ISBN: 149393869X ISBN-13(EAN): 9781493938698
Издательство: Springer
Рейтинг:
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book shows how to look at ways of visualizing large datasets, whether large in numbers of cases, or large in numbers of variables, or large in both. All ideas are illustrated with displays from analyses of real datasets.

Multidimensional Mining of Massive Text Data

Автор: Chao Zhang, Jiawei Han
Название: Multidimensional Mining of Massive Text Data
ISBN: 1681735210 ISBN-13(EAN): 9781681735214
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 14692.00 р.
Наличие на складе: Нет в наличии.

Описание: Unstructured text, as one of the most important data forms, plays a crucial role in data-driven decision making in domains ranging from social networking and information retrieval to scientific research and healthcare informatics. In many emerging applications, people's information need from text data is becoming multidimensional—they demand useful insights along multiple aspects from a text corpus. However, acquiring such multidimensional knowledge from massive text data remains a challenging task. This book presents data mining techniques that turn unstructured text data into multidimensional knowledge. We investigate two core questions. (1) How does one identify task-relevant text data with declarative queries in multiple dimensions? (2) How does one distill knowledge from text data in a multidimensional space? To address the above questions, we develop a text cube framework. First, we develop a cube construction module that organizes unstructured data into a cube structure, by discovering latent multidimensional and multi-granular structure from the unstructured text corpus and allocating documents into the structure. Second, we develop a cube exploitation module that models multiple dimensions in the cube space, thereby distilling from user-selected data multidimensional knowledge. Together, these two modules constitute an integrated pipeline: leveraging the cube structure, users can perform multidimensional, multigranular data selection with declarative queries; and with cube exploitation algorithms, users can extract multidimensional patterns from the selected data for decision making. The proposed framework has two distinctive advantages when turning text data into multidimensional knowledge: flexibility and label-efficiency. First, it enables acquiring multidimensional knowledge flexibly, as the cube structure allows users to easily identify task-relevant data along multiple dimensions at varied granularities and further distill multidimensional knowledge. Second, the algorithms for cube construction and exploitation require little supervision; this makes the framework appealing for many applications where labeled data are expensive to obtain.

Compression Schemes for Mining Large Datasets

Автор: T. Ravindra Babu; M. Narasimha Murty; S.V. Subrahm
Название: Compression Schemes for Mining Large Datasets
ISBN: 1447156064 ISBN-13(EAN): 9781447156062
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book addresses the challenges of data abstraction generation using the least number of database scans, compressing data through novel lossy and non-lossy schemes, and carrying out clustering and classification directly in the compressed domain.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия