Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Spatio-Temporal Graph Data Analytics, Venkata M. V. Gunturi; Shashi Shekhar


Варианты приобретения
Цена: 16769.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Venkata M. V. Gunturi; Shashi Shekhar
Название:  Spatio-Temporal Graph Data Analytics
ISBN: 9783319884868
Издательство: Springer
Классификация:


ISBN-10: 3319884867
Обложка/Формат: Soft cover
Страницы: 100
Вес: 0.19 кг.
Дата издания: 2019
Язык: English
Издание: Softcover reprint of
Иллюстрации: 30 illustrations, color; 31 illustrations, black and white; x, 100 p. 61 illus., 30 illus. in color.
Размер: 234 x 156 x 6
Читательская аудитория: Professional & vocational
Ключевые слова: Database Management
Основная тема: Computer Science
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book highlights some of the unique aspects of spatio-temporal graph data from the perspectives of modeling and developing scalable algorithms.


The Data Catalog: Sherlock Holmes Data Sleuthing for Analytics

Автор: O`Neil Bonnie K., Fryman Lowell
Название: The Data Catalog: Sherlock Holmes Data Sleuthing for Analytics
ISBN: 1634627873 ISBN-13(EAN): 9781634627870
Издательство: Gazelle Book Services
Рейтинг:
Цена: 8578.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Apply this definitive guide to data catalogs and select the feature set needed to empower your data citizens in their quest for faster time to insight. The data catalog may be the most important breakthrough in data management in the last decade, ranking alongside the advent of the data warehouse. The latter enabled business consumers to conduct their own analyses to obtain insights themselves. The data catalog is the next wave of this, empowering business users even further to drastically reduce time to insight, despite the rising tide of data flooding the enterprise. Use this book as a guide to provide a broad overview of the most popular Machine Learning (ML) data catalog products, and perform due diligence using the extensive features list. Consider graphical user interface (GUI) design issues such as layout and navigation, as well as scalability in terms of how the catalog will handle your current and anticipated data and metadata needs. ONeil & Frymanpresent a typology which ranges from products that focus on data lineage, curation and search, data governance, data preparation, and of course, the core capability of finding and understanding the data. The authors emphasize that machine learning is being adopted in many of these products, enabling a more elegant data democratization solution in the face of the burgeoning mountain of data that is engulfing organizations. Derek Strauss, Chairman/CEO, Gavroshe, and Former CDO, TD Ameritrade. This book is organized into three sections: Chapters 1 and 2 reveal the rationale for a data catalog and share how data scientists, data administrators, and curators fare with and without a data catalog; Chapters 3-10 present the many different types of data catalogs; Chapters 11 and 12 provide an extensive features list, current trends, and visions for the future.

Название: Data Analytics Applications In Law
ISBN: 149876665X ISBN-13(EAN): 9781498766654
Издательство: Taylor&Francis
Рейтинг:
Цена: 12707.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: For increasingly data-savvy clients, lawyers can no longer give "it depends" answers rooted in anecdata. Clients insist that their lawyers justify their reasoning, and with more than a limited set of war stories. The considered judgment of an experienced lawyer is unquestionably valuable. However, on balance, clients would rather have the considered judgment of an experienced lawyer informed by the most relevant information required to answer their questions.

Data-Driven Law: Data Analytics and the New Legal Services helps legal professionals meet the challenges posed by a data-driven approach to delivering legal services. Its chapters are written by leading experts who cover such topics as:

  • Mining legal data
  • Computational law
  • Uncovering bias through the use of Big Data
  • Quantifying the quality of legal services
  • Data mining and decision-making
  • Contract analytics and contract standards

In addition to providing clients with data-based insight, legal firms can track a matter with data from beginning to end, from the marketing spend through to the type of matter, hours spent, billed, and collected, including metrics on profitability and success. Firms can organize and collect documents after a matter and even automate them for reuse. Data on marketing related to a matter can be an amazing source of insight about which practice areas are most profitable.

Data-driven decision-making requires firms to think differently about their workflow. Most firms warehouse their files, never to be seen again after the matter closes. Running a data-driven firm requires lawyers and their teams to treat information about the work as part of the service, and to collect, standardize, and analyze matter data from cradle to grave. More than anything, using data in a law practice requires a different mindset about the value of this information. This book helps legal professionals to develop this data-driven mindset.

Data Analytics and Psychometrics: Informing Assessment Practices

Автор: Hong Jiao, Robert W. Lissitz, Anna Van Wie
Название: Data Analytics and Psychometrics: Informing Assessment Practices
ISBN: 1641133279 ISBN-13(EAN): 9781641133272
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 14137.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The general theme of this book is to encourage the use of relevant methodology in data mining which is or could be applied to the interplay of education, statistics and computer science to solve psychometric issues and challenges in the new generation of assessments. In addition to item response data, other data collected in the process of assessment and learning will be utilized to help solve psychometric challenges and facilitate learning and other educational applications. Process data include those collected or available for collection during the process of assessment and instructional phase such as responding sequence data, log files, the use of help features, the content of web searches, etc. Some book chapters present the general exploration of process data in large -scale assessment. Further, other chapters also address how to integrate psychometrics and learning analytics in assessment and survey, how to use data mining techniques for security and cheating detection, how to use more assessment results to facilitate student’s learning and guide teacher’s instructional efforts. The book includes both theoretical and methodological presentations that might guide the future in this area, as well as illustrations of efforts to implement big data analytics that might be instructive to those in the field of learning and psychometrics. The context of the effort is diverse, including K-12, higher education, financial planning, and survey utilization. It is hoped that readers can learn from different disciplines, especially those who are specialized in assessment, would be critical to expand the ideas of what we can do with data analytics for informing assessment practices.

An Introduction to Data Analytics

Автор: Moreira
Название: An Introduction to Data Analytics
ISBN: 1119296242 ISBN-13(EAN): 9781119296249
Издательство: Wiley
Рейтинг:
Цена: 12664.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

A guide to the principles and methods of data analysis that does not require knowledge of statistics or programming

A General Introduction to Data Analytics is an essential guide to understand and use data analytics. This book is written using easy-to-understand terms and does not require familiarity with statistics or programming. The authors--noted experts in the field--highlight an explanation of the intuition behind the basic data analytics techniques. The text also contains exercises and illustrative examples.

Thought to be easily accessible to non-experts, the book provides motivation to the necessity of analyzing data. It explains how to visualize and summarize data, and how to find natural groups and frequent patterns in a dataset. The book also explores predictive tasks, be them classification or regression. Finally, the book discusses popular data analytic applications, like mining the web, information retrieval, social network analysis, working with text, and recommender systems. The learning resources offer:

  • A guide to the reasoning behind data mining techniques
  • A unique illustrative example that extends throughout all the chapters
  • Exercises at the end of each chapter and larger projects at the end of each of the text's two main parts

Together with these learning resources, the book can be used in a 13-week course guide, one chapter per course topic.

The book was written in a format that allows the understanding of the main data analytics concepts by non-mathematicians, non-statisticians and non-computer scientists interested in getting an introduction to data science. A General Introduction to Data Analytics is a basic guide to data analytics written in highly accessible terms.

Learning Analytics in Education

Автор: David Niemi, Roy D. Pea, Bror Saxberg, Richard E. Clark
Название: Learning Analytics in Education
ISBN: 1641133694 ISBN-13(EAN): 9781641133692
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 7623.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides a comprehensive introduction by an extraordinary range of experts to the recent and rapidly developing field of learning analytics. Some of the finest current thinkers about ways to interpret and benefit from the increasing amount of evidence from learners’ experiences have taken time to explain their methods, describe examples, and point out new underpinnings for the field. Together, they show how this new field has the potential to dramatically increase learner success through deeper understanding of the academic, social-emotional, motivational, identity and meta-cognitive context each learner uniquely brings. Learning analytics is much more than “analyzing learning data”—it is about deeply understanding what learning activities work well, for whom, and when.Learning Analytics in Education provides an essential framework, as well as guidance and examples, for a wide range of professionals interested in the future of learning. If you are already involved in learning analytics, or otherwise trying to use an increasing density of evidence to understand learners’ progress, these leading thinkers in the field may give you new insights. If you are engaged in teaching at any level, or training future teachers/faculty for this new, increasingly technology-enhanced learning world, and want some sense of the potential opportunities (and pitfalls) of what technology can bring to your teaching and students, these forward-thinking leaders can spark your imagination. If you are involved in research around uses of technology, improving learning measurements, better ways to use evidence to improve learning, or in more deeply understanding human learning itself, you will find additional ideas and insights from some of the best thinkers in the field here. If you are involved in making administrative or policy decisions about learning, you will find new ideas (and dilemmas) coming your way from inevitable changes in how we design and deliver instruction, how we measure the outcomes, and how we provide feedback to students, teachers, developers, administrators, and policy-makers. For all these players, the trick will be to get the most out of all the new developments to efficiently and effectively improve learning performance, without getting distracted by “shiny” technologies that are disconnected from how human learning and development actually work.

Applied Data Analytics - Principles and Applications

Автор: Johnson I. Agbinya
Название: Applied Data Analytics - Principles and Applications
ISBN: 8770220964 ISBN-13(EAN): 9788770220965
Издательство: Taylor&Francis
Рейтинг:
Цена: 14851.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The emergence of huge amounts of data which require analysis and in some cases real-time processing has forced exploration into fast algorithms for handling very lage data sizes. Analysis of x-ray images in medical applications, cyber security data, crime data, telecommunications and stock market data, health records and business analytics data are but a few areas of interest. Applications and platforms including R, RapidMiner and Weka provide the basis for analysis, often used by practitioners who pay little to no attention to the underlying mathematics and processes impacting the data. This often leads to an inability to explain results or correct mistakes, or to spot errors.

Applied Data Analytics - Principles and Applications seeks to bridge this missing gap by providing some of the most sought after techniques in big data analytics. Establishing strong foundations in these topics provides practical ease when big data analyses are undertaken using the widely available open source and commercially orientated computation platforms, languages and visualisation systems. The book, when combined with such platforms, provides a complete set of tools required to handle big data and can lead to fast implementations and applications.

The book contains a mixture of machine learning foundations, deep learning, artificial intelligence, statistics and evolutionary learning mathematics written from the usage point of view with rich explanations on what the concepts mean. The author has thus avoided the complexities often associated with these concepts when found in research papers. The tutorial nature of the book and the applications provided are some of the reasons why the book is suitable for undergraduate, postgraduate and big data analytics enthusiasts.

This text should ease the fear of mathematics often associated with practical data analytics and support rapid applications in artificial intelligence, environmental sensor data modelling and analysis, health informatics, business data analytics, data from Internet of Things and deep learning applications.

Cognitive Social Mining Applications in Data Analytics and Forensics

Автор: Anandakumar Haldorai, Arulmurugan Ramu
Название: Cognitive Social Mining Applications in Data Analytics and Forensics
ISBN: 1522575227 ISBN-13(EAN): 9781522575221
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 28413.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Recently, there has been a rapid increase in interest regarding social network analysis in the data mining community. Cognitive radios are expected to play a major role in meeting this exploding traffic demand on social networks due to their ability to sense the environment, analyze outdoor parameters, and then make decisions for dynamic time, frequency, space, resource allocation, and management to improve the utilization of mining the social data.Cognitive Social Mining Applications in Data Analytics and Forensics is an essential reference source that reviews cognitive radio concepts and examines their applications to social mining using a machine learning approach so that an adaptive and intelligent mining is achieved. Featuring research on topics such as data mining, real-time ubiquitous social mining services, and cognitive computing, this book is ideally designed for social network analysts, researchers, academicians, and industry professionals.

Advanced Data Analytics in Health

Автор: Giabbanelli
Название: Advanced Data Analytics in Health
ISBN: 3319779109 ISBN-13(EAN): 9783319779102
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book introduces readers to the methods, types of data, and scale of analysis used in the context of health. The challenges of working with big data are explored throughout the book, while the benefits are also emphasized through the discoveries made possible by linking large datasets. Methods include thorough case studies from statistics, as well as the newest facets of data analytics: data visualization, modeling and simulation, and machine learning. The diversity of datasets is illustrated through chapters on networked data, image processing, and text, in addition to typical structured numerical datasets. While the methods, types of data, and scale have been individually covered elsewhere, by bringing them all together under one “umbrella” the book highlights synergies, while also helping scholars fluidly switch between tools as needed. New challenges and emerging frontiers are also discussed, helping scholars grasp how methods will need to change in response to the latest challenges in health.

Practical Text Analytics: Interpreting Text and Unstructured Data for Business Intelligence

Автор: Struhl Steven
Название: Practical Text Analytics: Interpreting Text and Unstructured Data for Business Intelligence
ISBN: 074947937X ISBN-13(EAN): 9780749479374
Издательство: Неизвестно
Цена: 34393.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Apply the tools and techniques of text analytics with ease and add value to your company by understanding its key approaches and the business reality behind them.

Data analytics and psychometrics

Название: Data analytics and psychometrics
ISBN: 1641133260 ISBN-13(EAN): 9781641133265
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 7623.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The general theme of this book is to encourage the use of relevant methodology in data mining which is or could be applied to the interplay of education, statistics and computer science to solve psychometric issues and challenges in the new generation of assessments. In addition to item response data, other data collected in the process of assessment and learning will be utilized to help solve psychometric challenges and facilitate learning and other educational applications. Process data include those collected or available for collection during the process of assessment and instructional phase such as responding sequence data, log files, the use of help features, the content of web searches, etc. Some book chapters present the general exploration of process data in large -scale assessment. Further, other chapters also address how to integrate psychometrics and learning analytics in assessment and survey, how to use data mining techniques for security and cheating detection, how to use more assessment results to facilitate student’s learning and guide teacher’s instructional efforts. The book includes both theoretical and methodological presentations that might guide the future in this area, as well as illustrations of efforts to implement big data analytics that might be instructive to those in the field of learning and psychometrics. The context of the effort is diverse, including K-12, higher education, financial planning, and survey utilization. It is hoped that readers can learn from different disciplines, especially those who are specialized in assessment, would be critical to expand the ideas of what we can do with data analytics for informing assessment practices.

The Data and Analytics Playbook

Автор: Lowell Fryman
Название: The Data and Analytics Playbook
ISBN: 0128023074 ISBN-13(EAN): 9780128023075
Издательство: Elsevier Science
Рейтинг:
Цена: 7409.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

The Data and Analytics Playbook: Proven Methods for Governed Data and Analytic Quality explores the way in which data continues to dominate budgets, along with the varying efforts made across a variety of business enablement projects, including applications, web and mobile computing, big data analytics, and traditional data integration.

The book teaches readers how to use proven methods and accelerators to break through data obstacles to provide faster, higher quality delivery of mission critical programs. Drawing upon years of practical experience, and using numerous examples and an easy to understand playbook, Lowell Fryman, Gregory Lampshire, and Dan Meers discuss a simple, proven approach to the execution of multiple data oriented activities. In addition, they present a clear set of methods to provide reliable governance, controls, risk, and exposure management for enterprise data and the programs that rely upon it.

In addition, they discuss a cost-effective approach to providing sustainable governance and quality outcomes that enhance project delivery, while also ensuring ongoing controls. Example activities, templates, outputs, resources, and roles are explored, along with different organizational models in common use today and the ways they can be mapped to leverage playbook data governance throughout the organization.

Predictive Analytics for Marketers: Using Data Mining for Business Advantage

Автор: Leventhal Barry
Название: Predictive Analytics for Marketers: Using Data Mining for Business Advantage
ISBN: 0749479930 ISBN-13(EAN): 9780749479930
Издательство: Неизвестно
Рейтинг:
Цена: 7619.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Understand how to apply predictive analytics to better manage a company and its resources more effectively, with this revolutionary book for marketing professionals.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия