Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Modern Algorithms of Cluster Analysis, Slawomir Wierzcho?; Mieczyslaw K?opotek


Варианты приобретения
Цена: 25155.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Slawomir Wierzcho?; Mieczyslaw K?opotek
Название:  Modern Algorithms of Cluster Analysis
ISBN: 9783319887524
Издательство: Springer
Классификация:




ISBN-10: 3319887521
Обложка/Формат: Soft cover
Страницы: 421
Вес: 0.68 кг.
Дата издания: 2019
Серия: Studies in Big Data
Язык: English
Издание: Softcover reprint of
Иллюстрации: 100 tables, color; 51 illustrations, black and white; xx, 421 p. 51 illus.
Размер: 234 x 156 x 23
Читательская аудитория: Professional & vocational
Ключевые слова: Computational Intelligence
Основная тема: Engineering
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book provides the reader with a basic understanding of the formal concepts of the cluster, clustering, partition, cluster analysis etc. The book explains feature-based, graph-based and spectral clustering methods and discusses their formal similarities and differences. Understanding the related formal concepts is particularly vital in the epoch of Big Data; due to the volume and characteristics of the data, it is no longer feasible to predominantly rely on merely viewing the data when facing a clustering problem. Usually clustering involves choosing similar objects and grouping them together. To facilitate the choice of similarity measures for complex and big data, various measures of object similarity, based on quantitative (like numerical measurement results) and qualitative features (like text), as well as combinations of the two, are described, as well as graph-based similarity measures for (hyper) linked objects and measures for multilayered graphs. Numerous variants demonstrating how such similarity measures can be exploited when defining clustering cost functions are also presented. In addition, the book provides an overview of approaches to handling large collections of objects in a reasonable time. In particular, it addresses grid-based methods, sampling methods, parallelization via Map-Reduce, usage of tree-structures, random projections and various heuristic approaches, especially those used for community detection.


Дополнительное описание: Introduction.- Cluster Analysis .- Algorithms of combinatorial cluster analysis .- Cluster quality versus choice of parameters .- Spectral clustering .-  Community discovery and identi?cation.- Data sets.



Stochastic Simulation: Algorithms and Analysis

Автор: Asmussen
Название: Stochastic Simulation: Algorithms and Analysis
ISBN: 038730679X ISBN-13(EAN): 9780387306797
Издательство: Springer
Рейтинг:
Цена: 6981.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Sampling-based computational methods have become a fundamental part of the numerical toolset of practitioners and researchers across an enormous number of different applied domains and academic disciplines. This book provides a broad treatment of such sampling-based methods , as well as accompanying mathematical analysis of the convergence properties of the methods discussed . The reach of the ideas is illustrated by discussing a wide range of applications and the models that have found wide usage. The first  half of the book focusses on general methods, whereas the second half discusses model-specific algorithms. Given the wide range of  examples, exercises and applications students, practitioners and researchers in  probability, statistics, operations research, economics, finance, engineering  as well as biology and chemistry and physics will find the book of value.  Soren Asmussen is Professor of Applied Probability at Aarhus University, Denmark and Peter Glynn is Thomas Ford Professor of  Engineering at Stanford University. 

Tools and Algorithms for the Construction and Analysis of Systems

Автор: Javier Esparza; Rupak Majumdar
Название: Tools and Algorithms for the Construction and Analysis of Systems
ISBN: 3642120016 ISBN-13(EAN): 9783642120015
Издательство: Springer
Рейтинг:
Цена: 12577.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Constitutes the refereed proceedings of the 16th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2010, held in Paphos, Cyprus, in March 2010, as part of ETAPS 2010, the European Joint Conferences on Theory and Practice of Software.

Inverse Problems: Tikhonov Theory and Algorithms

Автор: Ito Kazufumi, Jin Bangti
Название: Inverse Problems: Tikhonov Theory and Algorithms
ISBN: 9814596191 ISBN-13(EAN): 9789814596190
Издательство: World Scientific Publishing
Рейтинг:
Цена: 17741.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Inverse problems arise in practical applications whenever one needs to deduce unknowns from observables. This monograph is a valuable contribution to the highly topical field of computational inverse problems. Both mathematical theory and numerical algorithms for model-based inverse problems are discussed in detail. The mathematical theory focuses on nonsmooth Tikhonov regularization for linear and nonlinear inverse problems. The computational methods include nonsmooth optimization algorithms, direct inversion methods and uncertainty quantification via Bayesian inference.

The book offers a comprehensive treatment of modern techniques, and seamlessly blends regularization theory with computational methods, which is essential for developing accurate and efficient inversion algorithms for many practical inverse problems.

It demonstrates many current developments in the field of computational inversion, such as value function calculus, augmented Tikhonov regularization, multi-parameter Tikhonov regularization, semismooth Newton method, direct sampling method, uncertainty quantification and approximate Bayesian inference. It is written for graduate students and researchers in mathematics, natural science and engineering.

Modern Algorithms of Cluster Analysis

Автор: Slawomir Wierzcho?; Mieczyslaw A. K?opotek
Название: Modern Algorithms of Cluster Analysis
ISBN: 3319693077 ISBN-13(EAN): 9783319693071
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides the reader with a basic understanding of the formal concepts of the cluster, clustering, partition, cluster analysis etc. The book explains feature-based, graph-based and spectral clustering methods and discusses their formal similarities and differences. Understanding the related formal concepts is particularly vital in the epoch of Big Data; due to the volume and characteristics of the data, it is no longer feasible to predominantly rely on merely viewing the data when facing a clustering problem. Usually clustering involves choosing similar objects and grouping them together. To facilitate the choice of similarity measures for complex and big data, various measures of object similarity, based on quantitative (like numerical measurement results) and qualitative features (like text), as well as combinations of the two, are described, as well as graph-based similarity measures for (hyper) linked objects and measures for multilayered graphs. Numerous variants demonstrating how such similarity measures can be exploited when defining clustering cost functions are also presented. In addition, the book provides an overview of approaches to handling large collections of objects in a reasonable time. In particular, it addresses grid-based methods, sampling methods, parallelization via Map-Reduce, usage of tree-structures, random projections and various heuristic approaches, especially those used for community detection.


Principal and Minor Component Analysis Neural Networks to Principal Component Analysis Networks and Algorithms

Автор: Xiangyu Kong; Changhua Hu; Zhansheng Duan
Название: Principal and Minor Component Analysis Neural Networks to Principal Component Analysis Networks and Algorithms
ISBN: 981102913X ISBN-13(EAN): 9789811029134
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book not only provides a comprehensive introduction to neural-based PCA methods in control science, but also presents many novel PCA algorithms and their extensions and generalizations, e.g., dual purpose, coupled PCA, GED, neural based SVD algorithms, etc.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия