Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Almost Global Solutions of Capillary-Gravity Water Waves Equations on the Circle, Massimiliano Berti; Jean-Marc Delort


Варианты приобретения
Цена: 6288.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Massimiliano Berti; Jean-Marc Delort
Название:  Almost Global Solutions of Capillary-Gravity Water Waves Equations on the Circle
ISBN: 9783319994857
Издательство: Springer
Классификация:





ISBN-10: 3319994859
Обложка/Формат: Soft cover
Страницы: 269
Вес: 0.43 кг.
Дата издания: 2018
Серия: Lecture Notes of the Unione Matematica Italiana
Язык: English
Издание: 1st ed. 2018
Иллюстрации: 3 illustrations, black and white; x, 269 p. 3 illus.
Размер: 234 x 156 x 15
Читательская аудитория: Professional & vocational
Основная тема: Mathematics
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: The goal of this monograph is to prove that any solution of the Cauchy problem for the capillary-gravity water waves equations, in one space dimension, with periodic, even in space, small and smooth enough initial data, is almost globally defined in time on Sobolev spaces, provided the gravity-capillarity parameters are taken outside an exceptional subset of zero measure. In contrast to the many results known for these equations on the real line, with decaying Cauchy data, one cannot make use of dispersive properties of the linear flow. Instead, a normal forms-based procedure is used, eliminating those contributions to the Sobolev energy that are of lower degree of homogeneity in the solution. Since the water waves equations form a quasi-linear system, the usual normal forms approaches would face the well-known problem of losses of derivatives in the unbounded transformations. To overcome this, after a paralinearization of the capillary-gravity water waves equations, we perform several paradifferential reductions to obtain a diagonal system with constant coefficient symbols, up to smoothing remainders. Then we start with a normal form procedure where the small divisors are compensated by the previous paradifferential regularization. The reversible structure of the water waves equations, and the fact that we seek solutions even in space, guarantees a key cancellation which prevents the growth of the Sobolev norms of the solutions.
Дополнительное описание: Introduction.- MainResult. - Paradifferential Calculus. - Complex Formulation of the Equation and Diagonalization of the Matrix Symbol. - Reduction to a Constant Coefficients Operator and Proof of the Main Theorem. - The Dirichlet–Neumann Paradifferential



Quasi-periodic Standing Wave Solutions of Gravity-Capillary Water Waves

Автор: Massimiliano Berti, Riccardo Montalto
Название: Quasi-periodic Standing Wave Solutions of Gravity-Capillary Water Waves
ISBN: 1470440695 ISBN-13(EAN): 9781470440695
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 10659.00 р.
Наличие на складе: Нет в наличии.

Описание: The authors prove the existence and the linear stability of small amplitude time quasi-periodic standing wave solutions (i.e. periodic and even in the space variable $x$) of a 2-dimensional ocean with infinite depth under the action of gravity and surface tension. Such an existence result is obtained for all the values of the surface tension belonging to a Borel set of asymptotically full Lebesgue measure.

Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations

Автор: Marko Kostic
Название: Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations
ISBN: 3110641240 ISBN-13(EAN): 9783110641240
Издательство: Walter de Gruyter
Цена: 21004.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book discusses almost periodic and almost automorphic solutions to abstract integro-differential Volterra equations that are degenerate in time, and in particular equations whose solutions are governed by (degenerate) solution operator families with removable singularities at zero. It particularly covers abstract fractional equations and inclusions with multivalued linear operators as well as abstract fractional semilinear Cauchy problems.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия