Описание: Reflecting the significant developments of the past decade, this textbook explains key physical methods in modern biology. Each method is illustrated through real-world examples, alongside background information designed for both physicists and biologists, making this an ideal resource for students in biophysics at science and medical schools.
Автор: Miroslav Bursa et al Название: Information Technology in Bio- and Medical Informatics ISBN: 3319642642 ISBN-13(EAN): 9783319642642 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the refereed proceedings of the 8th International Conference on Information Technology in Bio- and Medical Informatics, ITBAM 2017, held in Lyon, France, in August 2017. The 3 revised full papers and 6 poster papers presented were carefully reviewed and selected from 15 submissions.
Автор: Raschka, Sebastian Mirjalili, Vahid Название: Python machine learning - ISBN: 1787125939 ISBN-13(EAN): 9781787125933 Издательство: Неизвестно Цена: 8091.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This second edition of Python Machine Learning by Sebastian Raschka is for developers and data scientists looking for a practical approach to machine learning and deep learning. In this updated edition, you`ll explore the machine learning process using Python and the latest open source technologies, including scikit-learn and TensorFlow 1.x.
Автор: Florian Knoll; Andreas Maier; Daniel Rueckert; Jon Название: Machine Learning for Medical Image Reconstruction ISBN: 3030338428 ISBN-13(EAN): 9783030338428 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the refereed proceedings of the Second International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. The 24 full papers presented were carefully reviewed and selected from 32 submissions.
Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.
Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.
Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.
It contains
Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.
Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
Includes open-access online courses that introduce practical applications of the material in the book
Автор: Vivek Bannore Название: Iterative-Interpolation Super-Resolution Image Reconstruction ISBN: 3642101453 ISBN-13(EAN): 9783642101458 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents a novel, hybrid, computationally-efficient reconstruction scheme for solving the problem of super-resolution restoration of high-resolution images from sequences of geometrically warped, aliased and under-sampled low-resolution images.
Описание: This book constitutes the refereed joint proceedings of the First International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2018, the First International Workshop on Deep Learning Fails, DLF 2018, and the First International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, iMIMIC 2018, held in conjunction with the 21st International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018, in Granada, Spain, in September 2018.The 4 full MLCN papers, the 6 full DLF papers, and the 6 full iMIMIC papers included in this volume were carefully reviewed and selected. The MLCN contributions develop state-of-the-art machine learning methods such as spatio-temporal Gaussian process analysis, stochastic variational inference, and deep learning for applications in Alzheimer's disease diagnosis and multi-site neuroimaging data analysis; the DLF papers evaluate the strengths and weaknesses of DL and identify the main challenges in the current state of the art and future directions; the iMIMIC papers cover a large range of topics in the field of interpretability of machine learning in the context of medical image analysis.
Описание: This book constitutes the refereed proceedings of the First International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2019, and the 8th International Workshop on Clinical Image-Based Procedures, CLIP 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019.
Second International Workshop on Interpretability of Machine Intelligence in Medical Image Computing (iMIMIC 2019).- Testing the robustness of attribution methods for convolutional neural networks in MRI-based Alzheimer's disease classification.- UBS: A Dimension-Agnostic Metric for Concept Vector Interpretability Applied to Radiomics.- Generation of Multimodal Justification Using Visual Word Constraint Model for Explainable Computer-Aided Diagnosis.- Incorporating Task-Specific Structural Knowledge into CNNs for Brain Midline Shift Detection.- Guideline-based Additive Explanation for Computer-Aided Diagnosis of Lung Nodules.- Deep neural network or dermatologist?.- Towards Interpretability of Segmentation Networks by analyzing DeepDreams.- 9th International Workshop on Multimodal Learning for Clinical Decision Support (ML-CDS 2019).- Towards Automatic Diagnosis from Multi-modal Medical Data.- Deep Learning based Multi-Modal Registration for Retinal Imaging.- Automated Enriched Medical Concept Generation for Chest X-ray Images.
Автор: Siddhartha Bhattacharyya; Debanjan Konar; Jan Plat Название: Hybrid Machine Intelligence for Medical Image Analysis ISBN: 9811389292 ISBN-13(EAN): 9789811389290 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The book discusses the impact of machine learning and computational intelligent algorithms on medical image data processing, and introduces the latest trends in machine learning technologies and computational intelligence for intelligent medical image analysis. The topics covered include automated region of interest detection of magnetic resonance images based on center of gravity; brain tumor detection through low-level features detection; automatic MRI image segmentation for brain tumor detection using the multi-level sigmoid activation function; and computer-aided detection of mammographic lesions using convolutional neural networks.
Автор: Mousumi Gupta; Debanjan Konar; Siddhartha Bhattach Название: Computer Vision and Machine Intelligence in Medical Image Analysis ISBN: 9811387974 ISBN-13(EAN): 9789811387975 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book includes high-quality papers presented at the Symposium 2019, organised by Sikkim Manipal Institute of Technology (SMIT), in Sikkim from 26–27 February 2019. It discusses common research problems and challenges in medical image analysis, such as deep learning methods. It also discusses how these theories can be applied to a broad range of application areas, including lung and chest x-ray, breast CAD, microscopy and pathology. The studies included mainly focus on the detection of events from biomedical signals.
Автор: Om Prakash Verma; Sudipta Roy; Subhash Chandra Pan Название: Advancement of Machine Intelligence in Interactive Medical Image Analysis ISBN: 9811510997 ISBN-13(EAN): 9789811510991 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The book discusses major technical advances and research findings in the field of machine intelligence in medical image analysis. This book provides insights into the basic science involved in processing, analysing, and utilising all aspects of advanced computational intelligence in medical decision-making based on medical imaging.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru