Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Machine Learning for Model Order Reduction, Khaled Salah Mohamed


Варианты приобретения
Цена: 16769.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Khaled Salah Mohamed
Название:  Machine Learning for Model Order Reduction
ISBN: 9783030093075
Издательство: Springer
Классификация:



ISBN-10: 3030093077
Обложка/Формат: Soft cover
Страницы: 93
Вес: 0.18 кг.
Дата издания: 2018
Язык: English
Издание: Softcover reprint of
Иллюстрации: 39 tables, color; xi, 93 p.
Размер: 234 x 156 x 6
Читательская аудитория: General (us: trade)
Основная тема: Engineering
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This Book discusses machine learning for model order reduction, which can be used in modern VLSI design to predict the behavior of an electronic circuit, via mathematical models that predict behavior. The author describes techniques to reduce significantly the time required for simulations involving large-scale ordinary differential equations, which sometimes take several days or even weeks. This method is called model order reduction (MOR), which reduces the complexity of the original large system and generates a reduced-order model (ROM) to represent the original one. Readers will gain in-depth knowledge of machine learning and model order reduction concepts, the tradeoffs involved with using various algorithms, and how to apply the techniques presented to circuit simulations and numerical analysis.
Introduces machine learning algorithms at the architecture level and the algorithm levels of abstraction;Describes new, hybrid solutions for model order reduction;Presents machine learning algorithms in depth, but simply;Uses real, industrial applications to verify algorithms.

Дополнительное описание: Chapter1: Introduction.- Chapter2: Bio-Inspired Machine Learning Algorithm: Genetic Algorithm.- Chapter3: Thermo-Inspired Machine Learning Algorithm: Simulated Annealing.- Chapter4: Nature-Inspired Machine Learning Algorithm: Particle Swarm Optimization,



Machine Learning Guide for Oil and Gas Using Python: A Step-By-Step Breakdown with Data, Algorithms, Codes, and Applications

Автор: Belyadi Hoss, Haghighat Alireza
Название: Machine Learning Guide for Oil and Gas Using Python: A Step-By-Step Breakdown with Data, Algorithms, Codes, and Applications
ISBN: 0128219297 ISBN-13(EAN): 9780128219294
Издательство: Elsevier Science
Рейтинг:
Цена: 19370.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications delivers a critical training and resource tool to help engineers understand machine learning theory and practice, specifically referencing use cases in oil and gas. The reference moves from explaining how Python works to step-by-step examples of utilization in various oil and gas scenarios, such as well testing, shale reservoirs and production optimization. Petroleum engineers are quickly applying machine learning techniques to their data challenges, but there is a lack of references beyond the math or heavy theory of machine learning. Machine Learning Guide for Oil and Gas Using Python details the open-source tool Python by explaining how it works at an introductory level then bridging into how to apply the algorithms into different oil and gas scenarios. While similar resources are often too mathematical, this book balances theory with applications, including use cases that help solve different oil and gas data challenges.

Quantum Optics

Название: Quantum Optics
ISBN: 3319290355 ISBN-13(EAN): 9783319290355
Издательство: Springer
Рейтинг:
Цена: 10448.00 р.
Наличие на складе: Поставка под заказ.

Описание: Einstein's Theory of Atom-Radiation Interaction.- Atom-Field Interaction: Semi classical Approach.- Quantization of the Electromagnetic Field.- States of the Electromagnetic Field I.- States of the Electromagnetic Field II.- Quantum Theory of Coherence.- Phase Space Description.- Atom-Field Interaction.- System-Reservoir Interactions.- Resonance Fluorescence.- Quantum Laser Theory: Master Equation Approach.- Quantum Laser Theory: Langevin Approach.- Quantum Noise Reduction 1.- Quantum Noise Reduction 2.- Quantum Phase.- Quantum Trajectories.- Atom Optics.- Measurements, Quantum Limits and All That.- Trapped Ions.- Decoherence.- Quantum Bits, Entanglement and Applications.- Quantum Correlations.- Quantum Cloning and Processing.- Appendices: Operator Relations.- The Method of Characteristics.- Proof.- Stochastic Processes in a Nutshell.- Derivation of the Homodyne Stochastic Schrцdinger Differential Equation.- Fluctuations.- Discrimination.- The No-Cloning Theorem.- The Universal Quantum Cloning Machine.- Hints to Solve the Problems.- Index.

Decreasing Fuel Consumption and Exhaust Gas Emissions in Transportation

Автор: Michael Palocz-Andresen
Название: Decreasing Fuel Consumption and Exhaust Gas Emissions in Transportation
ISBN: 3642429831 ISBN-13(EAN): 9783642429835
Издательство: Springer
Рейтинг:
Цена: 20896.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book examines the reduction of combustion gases in vehicles. It discusses technological solutions as well as the consequences of international legislation and their effects on the environmental and climate protection in the area of the mobility.

Machine Learning for Model Order Reduction

Автор: Mohamed
Название: Machine Learning for Model Order Reduction
ISBN: 331975713X ISBN-13(EAN): 9783319757131
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Chapter1: Introduction.- Chapter2: Bio-Inspired Machine Learning Algorithm: Genetic Algorithm.- Chapter3: Thermo-Inspired Machine Learning Algorithm: Simulated Annealing.- Chapter4: Nature-Inspired Machine Learning Algorithm: Particle Swarm Optimization, Artificial Bee Colony.- Chapter5: Control-Inspired Machine Learning Algorithm: Fuzzy Logic Optimization.- Chapter6: Brain-Inspired Machine Learning Algorithm: Neural Network Optimization.- Chapter7: Comparisons, Hybrid Solutions, Hardware architectures and New Directions.- Chapter8: Conclusions.

Model Order Reduction: Theory, Research Aspects and Applications

Автор: Wilhelmus H. Schilders; Henk A. van der Vorst; Joo
Название: Model Order Reduction: Theory, Research Aspects and Applications
ISBN: 3540788409 ISBN-13(EAN): 9783540788409
Издательство: Springer
Рейтинг:
Цена: 23058.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Describes the basics of model order reduction and related aspects. This work covers both general and specialized model order reduction techniques for linear and nonlinear systems, and discusses the use of model order reduction techniques in a variety of practical applications. It also contains many advances in model order reduction.

Model Order Reduction Techniques with Applications in Electrical Engineering

Автор: L. Fortuna; G. Nunnari; A. Gallo
Название: Model Order Reduction Techniques with Applications in Electrical Engineering
ISBN: 1447132009 ISBN-13(EAN): 9781447132004
Издательство: Springer
Рейтинг:
Цена: 14365.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Model Order Reduction Techniqes focuses on model reduction problems with particular applications in electrical engineering. Particular attention is given to providing basic concepts for building expert systems for model reducution.

IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018

Автор: J?rg Fehr; Bernard Haasdonk
Название: IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018
ISBN: 303021012X ISBN-13(EAN): 9783030210120
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume contains the proceedings of the IUTAM Symposium on Model Order Reduction of Coupled System, held in Stuttgart, Germany, May 22–25, 2018.For the understanding and development of complex technical systems, such as the human body or mechatronic systems, an integrated, multiphysics and multidisciplinary view is essential. Many problems can be solved within one physical domain. For the simulation and optimization of the combined system, the different domains are connected with each other. Very often, the combination is only possible by using reduced order models such that the large-scale dynamical system is approximated with a system of much smaller dimension where the most dominant features of the large-scale system are retained as much as possible. The field of model order reduction (MOR) is interdisciplinary. Researchers from Engineering, Mathematics and Computer Science identify, explore and compare the potentials, challenges and limitations of recent and new advances.

Power System Coherency and Model Reduction

Автор: Joe H. Chow
Название: Power System Coherency and Model Reduction
ISBN: 1489995129 ISBN-13(EAN): 9781489995124
Издательство: Springer
Рейтинг:
Цена: 18284.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides a comprehensive treatment for understanding interarea modes in large power systems and obtaining reduced-order models using the coherency concept and selective modal analysis method.

Model Reduction for Circuit Simulation

Автор: Peter Benner; Michael Hinze; E. Jan W. ter Maten
Название: Model Reduction for Circuit Simulation
ISBN: 940073283X ISBN-13(EAN): 9789400732834
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Simulation plays a major role in the computer-aided design of integrated circuits, yet its complexities in an age of miniaturization cause time-lags in product manufacture. Model Order Reduction resolves the dilemma, and this volume covers the latest results.

Permanent Magnet Spherical Motors

Автор: Bai
Название: Permanent Magnet Spherical Motors
ISBN: 9811079617 ISBN-13(EAN): 9789811079610
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In order to take full advantage of the concise structure of spherical motors in practical applications, magnetic-field-based sensing and control methods that utilize the existing magnetic fields of spherical motors and eliminate the need to install external sensors for feedback are proposed.

Offset Reduction Techniques in High-Speed Analog-to-Digital Converters

Автор: Pedro M. Figueiredo; Jo?o C. Vital
Название: Offset Reduction Techniques in High-Speed Analog-to-Digital Converters
ISBN: 9048181925 ISBN-13(EAN): 9789048181926
Издательство: Springer
Рейтинг:
Цена: 29209.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume analyzes, describes the design, and presents test results of Analog-to-Digital Converters employing the three main high-speed architectures: flash, two-step flash and folding and interpolation. The authors review the pros and cons of each one.

System Reduction for Nanoscale IC Design

Автор: Peter Benner
Название: System Reduction for Nanoscale IC Design
ISBN: 3319072358 ISBN-13(EAN): 9783319072357
Издательство: Springer
Рейтинг:
Цена: 12577.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Preface.- 1 Model order reduction of integrated circuits in electrical networks: Michael Hinze, Martin Kunkel, Ulrich Matthes, and Morten Vierling.- 2 Element-based model reduction in circuit simulation: Andreas Steinbrecher and Tatjana Stykel.- 3 Reduced Representation of Power Grid Models: Peter Benner and Andrй Schneider.- 4 Coupling of numeric/symbolic reduction methods for generating parametrized models of nanoelectronic systems: Oliver Schmidt, Matthias Hauser, and Patrick Lang.- 5 Low-Rank Cholesky Factor Krylov Subspace Methods for Generalized Projected Lyapunov Equations: Matthias Bollhцfer and Andrй K. Eppler.- Index.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия