The Geometry of Spherically Symmetric Finsler Manifolds, Enli Guo; Xiaohuan Mo
Автор: Whittlesey, Marshall A. Название: Spherical geometry and its applications ISBN: 0367196905 ISBN-13(EAN): 9780367196905 Издательство: Taylor&Francis Рейтинг: Цена: 13779.00 р. Наличие на складе: Поставка под заказ.
Описание: The author introduces spherical geometry and it practical applications in a mathematically rigorous form. Readers will see how the axiom system for plane geometry can be modified in certain ways to produce a completely different geometric world.
Автор: Chun-Ju Lai, Li Luo, Weiqiang Wang, Yiqiang Li, Zhaobing Fan Название: Affine Flag Varieties and Quantum Symmetric Pairs ISBN: 1470441756 ISBN-13(EAN): 9781470441753 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 12058.00 р. Наличие на складе: Нет в наличии.
Описание: Demonstrates that the quantum groups arising from Lusztig algebras and Schur algebras via stabilization procedures are (idempotented) coideal subalgebras of quantum groups of affine $\mathfrak{sl}$ and $\mathfrak{gl}$ types, respectively. In this way, the authors provide geometric realizations of eight quantum symmetric pairs of affine types.
Автор: Valery V. Volchkov; Vitaly V. Volchkov Название: Offbeat Integral Geometry on Symmetric Spaces ISBN: 3034808003 ISBN-13(EAN): 9783034808002 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book surveys the development of integral geometry on domains of homogeneous spaces, covering analysis of multidimensional Euclidean domains and Riemannian symmetric spaces of arbitrary ranks as well as recent work on phase space and the Heisenberg group.
Автор: Gilkey, Peter B. Название: Geometry of spherical space form groups, the ISBN: 9813220783 ISBN-13(EAN): 9789813220782 Издательство: World Scientific Publishing Рейтинг: Цена: 26928.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
This volume focuses on discussing the interplay between the analysis, as exemplified by the eta invariant and other spectral invariants, the number theory, as exemplified by the relevant Dedekind sums and Rademacher reciprocity, the algebraic topology, as exemplified by the equivariant bordism groups, K-theory groups, and connective K-theory groups, and the geometry of spherical space forms, as exemplified by the Smith homomorphism. These are used to study the existence of metrics of positive scalar curvature on spin manifolds of dimension at least 5 whose fundamental group is a spherical space form group.
This volume is a completely rewritten revision of the first edition. The underlying organization is modified to provide a better organized and more coherent treatment of the material involved. In addition, approximately 100 pages have been added to study the existence of metrics of positive scalar curvature on spin manifolds of dimension at least 5 whose fundamental group is a spherical space form group. We have chosen to focus on the geometric aspect of the theory rather than more abstract algebraic constructions (like the assembly map) and to restrict our attention to spherical space forms rather than more general and more complicated geometrical examples to avoid losing contact with the fundamental geometry which is involved.
Автор: Simon Hubbert; Qu?c Th?ng Le Gia; Tanya M. Morton Название: Spherical Radial Basis Functions, Theory and Applications ISBN: 3319179381 ISBN-13(EAN): 9783319179384 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is the first to be devoted to the theory and applications of spherical (radial) basis functions (SBFs), which is rapidly emerging as one of the most promising techniques for solving problems where approximations are needed on the surface of a sphere.
Автор: Fran?ois Rouvi?re Название: Symmetric Spaces and the Kashiwara-Vergne Method ISBN: 3319097725 ISBN-13(EAN): 9783319097725 Издательство: Springer Рейтинг: Цена: 4890.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Its goal is to: - motivate and explain the method for general Lie groups, reducing the proof of deep results in invariant analysis to the verification of two formal Lie bracket identities related to the Campbell-Hausdorff formula (the "Kashiwara-Vergne conjecture");
Описание: This two-volume work introduces the theory and applications of Schur-convex functions. The first volume introduces concepts and properties of Schur-convex functions, including Schur-geometrically convex functions, Schur-harmonically convex functions, Schur-power convex functions, etc. and also discusses applications of Schur-convex functions in symmetric function inequalities.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru