Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Machine Learning, RODRIGO F MELLO; Moacir Antonelli Ponti


Варианты приобретения
Цена: 9083.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: RODRIGO F MELLO; Moacir Antonelli Ponti
Название:  Machine Learning
ISBN: 9783030069490
Издательство: Springer
Классификация:




ISBN-10: 3030069494
Обложка/Формат: Soft cover
Страницы: 362
Вес: 0.58 кг.
Дата издания: 2018
Язык: English
Издание: Softcover reprint of
Иллюстрации: 190 illustrations, black and white; xv, 362 p. 190 illus.
Размер: 234 x 156 x 20
Читательская аудитория: General (us: trade)
Основная тема: Computer Science
Подзаголовок: A Practical Approach on the Statistical Learning Theory
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book presents the Statistical Learning Theory in a detailed and easy to understand way, by using practical examples, algorithms and source codes. It can be used as a textbook in graduation or undergraduation courses, for self-learners, or as reference with respect to the main theoretical concepts of Machine Learning. Fundamental concepts of Linear Algebra and Optimization applied to Machine Learning are provided, as well as source codes in R, making the book as self-contained as possible.It starts with an introduction to Machine Learning concepts and algorithms such as the Perceptron, Multilayer Perceptron and the Distance-Weighted Nearest Neighbors with examples, in order to provide the necessary foundation so the reader is able to understand the Bias-Variance Dilemma, which is the central point of the Statistical Learning Theory.Afterwards, we introduce all assumptions and formalize the Statistical Learning Theory, allowing the practical study of different classification algorithms. Then, we proceed with concentration inequalities until arriving to the Generalization and the Large-Margin bounds, providing the main motivations for the Support Vector Machines. From that, we introduce all necessary optimization concepts related to the implementation of Support Vector Machines. To provide a next stage of development, the book finishes with a discussion on SVM kernels as a way and motivation to study data spaces and improve classification results.
Дополнительное описание: Chapter 1 – A Brief Review on Machine Learning.- Chapter 2 - Statistical Learning Theory.- Chapter 3 - Assessing Learning Algorithms.- Chapter 4 - Introduction to Support Vector Machines.- Chapter 5 - In Search for the Optimization Algorithm.- Chapter 6 -



Linear Algebra and Learning from Data

Автор: Strang Gilbert
Название: Linear Algebra and Learning from Data
ISBN: 0692196382 ISBN-13(EAN): 9780692196380
Издательство: Cambridge Academ
Рейтинг:
Цена: 9978.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special matrices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation.

Pattern Recognition and Machine Learning

Автор: Christopher M. Bishop
Название: Pattern Recognition and Machine Learning
ISBN: 0387310738 ISBN-13(EAN): 9780387310732
Издательство: Springer
Рейтинг:
Цена: 11878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Gaussian processes for machine learning

Автор: Rasmussen, Carl Edward Williams, Christopher K. I.
Название: Gaussian processes for machine learning
ISBN: 026218253X ISBN-13(EAN): 9780262182539
Издательство: MIT Press
Рейтинг:
Цена: 8465.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines.

Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

Principles and Theory for Data Mining and Machine Learning

Автор: Clarke
Название: Principles and Theory for Data Mining and Machine Learning
ISBN: 0387981349 ISBN-13(EAN): 9780387981345
Издательство: Springer
Рейтинг:
Цена: 27950.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Extensive treatment of the most up-to-date topicsProvides the theory and concepts behind popular and emerging methodsRange of topics drawn from Statistics, Computer Science, and Electrical Engineering

Machine scheduling to minimize weighted completion times.

Автор: Nicolо Gusmeroli
Название: Machine scheduling to minimize weighted completion times.
ISBN: 3319775278 ISBN-13(EAN): 9783319775272
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This work reviews the most important results regarding the use of the ГЋВ±-point in Scheduling Theory. Lastly, the book explores the latest techniques used for many scheduling problems with different constraints, such as release dates, precedences, and parallel machines.

Dynamic Fuzzy Machine Learning

Автор: Li, Fanzhang / Zhang, Li / Zhang, Zhao
Название: Dynamic Fuzzy Machine Learning
ISBN: 3110518708 ISBN-13(EAN): 9783110518702
Издательство: Walter de Gruyter
Рейтинг:
Цена: 22439.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Machine learning is widely used for data analysis. Dynamic fuzzy data are one of the most difficult types of data to analyse in the field of big data, cloud computing, the Internet of Things, and quantum information. At present, the processing of this kind of data is not very mature. The authors carried out more than 20 years of research, and show in this book their most important results. The seven chapters of the book are devoted to key topics such as dynamic fuzzy machine learning models, dynamic fuzzy self-learning subspace algorithms, fuzzy decision tree learning, dynamic concepts based on dynamic fuzzy sets, semi-supervised multi-task learning based on dynamic fuzzy data, dynamic fuzzy hierarchy learning, examination of multi-agent learning model based on dynamic fuzzy logic. This book can be used as a reference book for senior college students and graduate students as well as college teachers and scientific and technical personnel involved in computer science, artificial intelligence, machine learning, automation, data analysis, mathematics, management, cognitive science, and finance. It can be also used as the basis for teaching the principles of dynamic fuzzy learning.

Toward Deep Neural Networks

Автор: Zhang
Название: Toward Deep Neural Networks
ISBN: 1138387037 ISBN-13(EAN): 9781138387034
Издательство: Taylor&Francis
Рейтинг:
Цена: 19140.00 р.
Наличие на складе: Поставка под заказ.

Описание: This book introduces deep neural networks, with a focus on the weights-and-structure determination (WASD) algorithm. Based on the authors` 20 years of research experience on neuronets, the book explores the models, algorithms, and applications of the WASD neuronet.

Introduction to Applied Linear Algebra

Автор: Boyd Stephen
Название: Introduction to Applied Linear Algebra
ISBN: 1316518965 ISBN-13(EAN): 9781316518960
Издательство: Cambridge Academ
Рейтинг:
Цена: 6811.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A groundbreaking introductory textbook covering the linear algebra methods needed for data science and engineering applications. It combines straightforward explanations with numerous practical examples and exercises from data science, machine learning and artificial intelligence, signal and image processing, navigation, control, and finance.

AI and Human Thought and Emotion

Автор: Sam Freed
Название: AI and Human Thought and Emotion
ISBN: 0367029294 ISBN-13(EAN): 9780367029296
Издательство: Taylor&Francis
Рейтинг:
Цена: 16078.00 р.
Наличие на складе: Поставка под заказ.

Описание: This reference work examines how human thought processes and emotion can be captured by artificial intelligence (AI) algorithms and code. It provides a theoretical framework and demonstrates how code can be generate on the basis of the framework.

A primer on machine learning applications in civil engineering /

Автор: Deka, Paresh Chandra,
Название: A primer on machine learning applications in civil engineering /
ISBN: 113832339X ISBN-13(EAN): 9781138323391
Издательство: Taylor&Francis
Рейтинг:
Цена: 15004.00 р.
Наличие на складе: Поставка под заказ.

Описание: This book provides a broad overview of the available machine learning techniques for solving civil engineering problems including drought forecasting, river flow forecasting, precipitation forecasting, and significant wave height forecasting. Fundamentals of both theoretical and practical aspects are discussed in varied domains.

Bayesian Reasoning and Machine Learning

Автор: Barber
Название: Bayesian Reasoning and Machine Learning
ISBN: 0521518148 ISBN-13(EAN): 9780521518147
Издательство: Cambridge Academ
Рейтинг:
Цена: 11088.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This practical introduction for final-year undergraduate and graduate students is ideally suited to computer scientists without a background in calculus and linear algebra. Numerous examples and exercises are provided. Additional resources available online and in the comprehensive software package include computer code, demos and teaching materials for instructors.

Introduction to High-Dimensional Statistics

Автор: Giraud
Название: Introduction to High-Dimensional Statistics
ISBN: 1482237946 ISBN-13(EAN): 9781482237948
Издательство: Taylor&Francis
Рейтинг:
Цена: 9645.00 р.
Наличие на складе: Поставка под заказ.

Описание: Ever-greater computing technologies have given rise to an exponentially growing volume of data. Today massive data sets (with potentially thousands of variables) play an important role in almost every branch of modern human activity, including networks, finance, and genetics. However, analyzing such data has presented a challenge for statisticians and data analysts and has required the development of new statistical methods capable of separating the signal from the noise. Introduction to High-Dimensional Statistics is a concise guide to state-of-the-art models, techniques, and approaches for handling high-dimensional data. The book is intended to expose the reader to the key concepts and ideas in the most simple settings possible while avoiding unnecessary technicalities. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this highly accessible text: Describes the challenges related to the analysis of high-dimensional data Covers cutting-edge statistical methods including model selection, sparsity and the lasso, aggregation, and learning theory Provides detailed exercises at the end of every chapter with collaborative solutions on a wikisite Illustrates concepts with simple but clear practical examples Introduction to High-Dimensional Statistics is suitable for graduate students and researchers interested in discovering modern statistics for massive data. It can be used as a graduate text or for self-study.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия