Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Nonlinear Dispersive Partial Differential Equations and Inverse Scattering, Peter D. Miller; Peter A. Perry; Jean-Claude Saut;


Варианты приобретения
Цена: 13974.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Peter D. Miller; Peter A. Perry; Jean-Claude Saut;
Название:  Nonlinear Dispersive Partial Differential Equations and Inverse Scattering
ISBN: 9781493998050
Издательство: Springer
Классификация:


ISBN-10: 1493998056
Обложка/Формат: Hardcover
Страницы: 528
Вес: 0.97 кг.
Дата издания: 2019
Серия: Fields Institute Communications
Язык: English
Издание: 1st ed. 2019
Иллюстрации: 1 tables, color; 1 illustrations, color; 5 illustrations, black and white; viii, 430 p. 6 illus., 1 illus. in color.
Размер: 234 x 156 x 30
Читательская аудитория: Professional & vocational
Основная тема: Mathematics
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This volume contains lectures and invited papers from the Focus Program on Nonlinear Dispersive Partial Differential Equations and Inverse Scattering held at the Fields Institute from July 31-August 18, 2017. The conference brought together researchers in completely integrable systems and PDE with the goal of advancing the understanding of qualitative and long-time behavior in dispersive nonlinear equations. The program included Percy Deift’s Coxeter lectures, which appear in this volume together with tutorial lectures given during the first week of the focus program. The research papers collected here include new results on the focusing ?nonlinear Schr?dinger (NLS) equation, the massive Thirring model, and the Benjamin-Bona-Mahoney equation as dispersive PDE in one space dimension, as well as the Kadomtsev-Petviashvili II equation, the Zakharov-Kuznetsov equation, and the Gross-Pitaevskii equation as dispersive PDE in two space dimensions.The Focus Program coincided with the fiftieth anniversary of the discovery by Gardner, Greene, Kruskal and Miura that the Korteweg-de Vries (KdV) equation could be integrated by exploiting a remarkable connection between KdV and the spectral theory of Schrodingers equation in one space dimension. This led to the discovery of a number of completely integrable models of dispersive wave propagation, including the cubic NLS equation, and the derivative NLS equation in one space dimension and the Davey-Stewartson, Kadomtsev-Petviashvili and Novikov-Veselov equations in two space dimensions. These models have been extensively studied and, in some cases, the inverse scattering theory has been put on rigorous footing. It has been used as a powerful analytical tool to study global well-posedness and elucidate asymptotic behavior of the solutions, including dispersion, soliton resolution, and semiclassical limits.
Дополнительное описание: Fifty years of KdV: an integrable system (P. Deift).- Wave turbulence and complete integrability (P. Gerard).- Benjamin-Ono and Intermediate Long Wave Equations: Modeling, IST, and PDE (J.-C. Saut).- Inverse scattering and global well-posedness in one and



Dispersive Partial Differential Equations

Автор: Erdo?an
Название: Dispersive Partial Differential Equations
ISBN: 1107149045 ISBN-13(EAN): 9781107149045
Издательство: Cambridge Academ
Рейтинг:
Цена: 11088.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Provides a self-contained and accessible introduction to nonlinear dispersive partial differential equations (PDEs) for graduate or advanced undergraduate students in mathematics, engineering, and physical sciences. The book can be used for self-study, or for teaching a semester-long introductory graduate course in PDEs.

Dispersive equations and nonlinear waves

Автор: Koch, Herbert Tataru, Daniel Visan, Monica
Название: Dispersive equations and nonlinear waves
ISBN: 303480735X ISBN-13(EAN): 9783034807357
Издательство: Springer
Рейтинг:
Цена: 5589.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Dispersive Equations and Nonlinear Waves

Nonlinear Partial Differential Equations

Автор: Helge Holden; Kenneth H. Karlsen
Название: Nonlinear Partial Differential Equations
ISBN: 3642441637 ISBN-13(EAN): 9783642441639
Издательство: Springer
Рейтинг:
Цена: 21661.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The topic of the 2010 Abel Symposium, hosted at the Norwegian Academy of Science and Letters, Oslo, was Nonlinear Partial Differential Equations, the study of which is of fundamental importance in mathematics and in almost all of natural sciences, economics, and engineering.

Introduction to nonlinear dispersive equations

Автор: Linares, Felipe Ponce, Gustavo
Название: Introduction to nonlinear dispersive equations
ISBN: 1493921800 ISBN-13(EAN): 9781493921805
Издательство: Springer
Рейтинг:
Цена: 8384.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Introduction to Nonlinear Dispersive Equations

Nonlinear Dispersive Waves and Fluids

Автор: Shijun Zheng, Marius Beceanu, Jerry Bona, Geng Chen, Tuoc Van Phan
Название: Nonlinear Dispersive Waves and Fluids
ISBN: 1470441098 ISBN-13(EAN): 9781470441098
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 16302.00 р.
Наличие на складе: Нет в наличии.

Описание: This volume contains the proceedings of the AMS Special Session on Spectral Calculus and Quasilinear Partial Differential Equations and the AMS Special Session on PDE Analysis on Fluid Flows, which were held in January 2017 in Atlanta, Georgia. These two sessions shared the underlying theme of the analysis aspect of evolutionary PDEs and mathematical physics.The articles address the latest trends and perspectives in the area of nonlinear dispersive equations and fluid flows. The topics mainly focus on using state-of-the-art methods and techniques to investigate problems of depth and richness arising in quantum mechanics, general relativity, and fluid dynamics.

Dispersive Transport Equations and Multiscale Models

Автор: Ben Abdallah Naoufel; Anton Arnold; Pierre Degond;
Название: Dispersive Transport Equations and Multiscale Models
ISBN: 1461264731 ISBN-13(EAN): 9781461264736
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: IMA Volumes 135: Transport in Transition Regimes and 136: Dispersive Transport Equations and Multiscale Models focus on the modeling of processes for which transport is one of the most complicated components.

Large-Time Behavior of Solutions of Linear Dispersive Equations

Автор: Daniel B. Dix
Название: Large-Time Behavior of Solutions of Linear Dispersive Equations
ISBN: 3540634347 ISBN-13(EAN): 9783540634348
Издательство: Springer
Рейтинг:
Цена: 6288.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This text is aimed at researchers and graduate students in the fields of differential, difference and integral equations. It explores the large-time behaviour of solutions of linear dispersive equations, looking at Laplace expansions, uniformly valid expansions for large-time and applications.

Nonlinear elliptic partial differential equations

Автор: Dret, Herve Le
Название: Nonlinear elliptic partial differential equations
ISBN: 3319783890 ISBN-13(EAN): 9783319783895
Издательство: Springer
Рейтинг:
Цена: 9083.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This textbook presents the essential parts of the modern theory of nonlinear partial differential equations, including the calculus of variations.After a short review of results in real and functional analysis, the author introduces the main mathematical techniques for solving both semilinear and quasilinear elliptic PDEs, and the associated boundary value problems. Key topics include infinite dimensional fixed point methods, the Galerkin method, the maximum principle, elliptic regularity, and the calculus of variations. Aimed at graduate students and researchers, this textbook contains numerous examples and exercises and provides several comments and suggestions for further study.

Geometric Analysis and Nonlinear Partial Differential Equations

Автор: Stefan Hildebrandt; Hermann Karcher
Название: Geometric Analysis and Nonlinear Partial Differential Equations
ISBN: 3642628877 ISBN-13(EAN): 9783642628870
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Richard Courant wrote in 1950: "It has always been a temptationfor mathematicians to present the crystallized product of their thought as a deductive general theory and to relegate the individual mathematical phenomenon into the role of an example.

Singular Nonlinear Partial Differential Equations

Автор: Raymond G?rard; Hidetoshi Tahara
Название: Singular Nonlinear Partial Differential Equations
ISBN: 3322802868 ISBN-13(EAN): 9783322802866
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The aim of this book is to put together all the results that are known about the existence of formal, holomorphic and singular solutions of singular non linear partial differential equations. We study the existence of formal power series solutions, holomorphic solutions, and singular solutions of singular non linear partial differential equations. In the first chapter, we introduce operators with regular singularities in the one variable case and we give a new simple proof of the classical Maillet's theorem for algebraic differential equations. In chapter 2, we extend this theory to operators in several variables. The chapter 3 is devoted to the study of formal and convergent power series solutions of a class of singular partial differential equations having a linear part, using the method of iteration and also Newton's method. As an appli- cation of the former results, we look in chapter 4 at the local theory of differential equations of the form xy' = 1(x, y) and, in particular, we show how easy it is to find the classical results on such an equation when 1(0,0) = 0 and give also the study of such an equation when 1(0,0) #- 0 which was never given before and can be extended to equations of the form Ty = F(x, y) where T is an arbitrary vector field.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия