Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Supergeometry, Super Riemann Surfaces and the Superconformal Action Functional, Enno Ke?ler


Варианты приобретения
Цена: 6288.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Enno Ke?ler
Название:  Supergeometry, Super Riemann Surfaces and the Superconformal Action Functional
ISBN: 9783030137571
Издательство: Springer
Классификация:



ISBN-10: 3030137570
Обложка/Формат: Soft cover
Страницы: 305
Вес: 0.49 кг.
Дата издания: 2019
Серия: Lecture Notes in Mathematics
Язык: English
Издание: 1st ed. 2019
Иллюстрации: 51 illustrations, black and white; xiii, 305 p. 51 illus.
Размер: 234 x 156 x 17
Читательская аудитория: Professional & vocational
Основная тема: Mathematics
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book treats the two-dimensional non-linear supersymmetric sigma model or spinning string from the perspective of supergeometry. The objective is to understand its symmetries as geometric properties of super Riemann surfaces, which are particular complex super manifolds of dimension 1|1.The first part gives an introduction to the super differential geometry of families of super manifolds. Appropriate generalizations of principal bundles, smooth families of complex manifolds and integration theory are developed.The second part studies uniformization, U(1)-structures and connections on Super Riemann surfaces and shows how the latter can be viewed as extensions of Riemann surfaces by a gravitino field. A natural geometric action functional on super Riemann surfaces is shown to reproduce the action functional of the non-linear supersymmetric sigma model using a component field formalism. The conserved currents of this action can be identified as infinitesimal deformations of the super Riemann surface. This is in surprising analogy to the theory of Riemann surfaces and the harmonic action functional on them.This volume is aimed at both theoretical physicists interested in a careful treatment of the subject and mathematicians who want to become acquainted with the potential applications of this beautiful theory.
Дополнительное описание: Introduction.- PART I Super Differential Geometry.- Linear Superalgebra.- Supermanifolds.- Vector Bundles.- Super Lie Groups.- Principal Fiber Bundles.- Complex Supermanifolds.- Integration.- PART II Super Riemann Surfaces.- Super Riemann Surfaces and Red



Six-Dimensional Superconformal Field Theories and Their Torus Compactifications

Автор: Kantaro Ohmori
Название: Six-Dimensional Superconformal Field Theories and Their Torus Compactifications
ISBN: 9811330913 ISBN-13(EAN): 9789811330919
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This thesis describes the structures of six-dimensional (6d) superconformal field theories and its torus compactifications. The first half summarizes various aspects of 6d field theories, while the latter half investigates torus compactifications of these theories, and relates them to four-dimensional superconformal field theories in the class, called class S. It is known that compactifications of 6d conformal field theories with maximal supersymmetries provide numerous insights into four-dimensional superconformal field theories. This thesis generalizes the story to the theories with smaller supersymmetry, constructing those six-dimensional theories as brane configurations in the M-theory, and highlighting the importance of fractionalization of M5-branes. This result establishes new dualities between the theories with eight supercharges.

Current Algebras on Riemann Surfaces

Автор: Oleg K. Sheinman
Название: Current Algebras on Riemann Surfaces
ISBN: 3110263963 ISBN-13(EAN): 9783110263961
Издательство: Walter de Gruyter
Цена: 18985.00 р.
Наличие на складе: Нет в наличии.

Описание: This monograph is an introduction into a new and fast developing field on the crossroads of infinite-dimensional Lie algebra theory and contemporary mathematical physics. It contains a self-consistent presentation of the theory of Krichever-Novikov algebras, Lax operator algebras, their interaction, representation theory, relations to moduli spaces of Riemann surfaces and holomorphic vector bundles on them, to Lax integrable systems, and conformal field theory. For beginners, the book provides a short way to join in the investigations in these fields. For experts, it sums up the recent advances in the theory of almost graded infinite-dimensional Lie algebras and their applications.The book may serve as a base for semester lecture courses on finite-dimensional integrable systems, conformal field theory, almost graded Lie algebras. Majority of results are presented for the first time in the form of monograph.

Galois theory, coverings, and riemann surfaces

Автор: Khovanskii, Askold
Название: Galois theory, coverings, and riemann surfaces
ISBN: 364238840X ISBN-13(EAN): 9783642388408
Издательство: Springer
Рейтинг:
Цена: 8384.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Galois Theory, Coverings, and Riemann Surfaces

Topics in the Theory of Riemann Surfaces

Автор: Robert D.M. Accola
Название: Topics in the Theory of Riemann Surfaces
ISBN: 3540587217 ISBN-13(EAN): 9783540587217
Издательство: Springer
Рейтинг:
Цена: 3487.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The book`s main concern is automorphisms of Riemann surfaces, giving a foundational treatment from the point of view of Galois coverings, and treating the problem of the largest automorphism group for a Riemann surface of a given genus.

The Riemann Hypothesis for Function Fields

Автор: Frankenhuijsen
Название: The Riemann Hypothesis for Function Fields
ISBN: 1107685311 ISBN-13(EAN): 9781107685314
Издательство: Cambridge Academ
Рейтинг:
Цена: 6019.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A description of how non-commutative geometry could provide a means to attack the Riemann Hypothesis, one of the most important unsolved problems in mathematics. The book will be of interest to graduate students in analytic and algebraic number theory, and provides a strong foundation for further research in this area.

The Riemann Hypothesis for Function Fields

Автор: Frankenhuijsen
Название: The Riemann Hypothesis for Function Fields
ISBN: 1107047218 ISBN-13(EAN): 9781107047211
Издательство: Cambridge Academ
Рейтинг:
Цена: 16790.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A description of how non-commutative geometry could provide a means to attack the Riemann Hypothesis, one of the most important unsolved problems in mathematics. The book will be of interest to graduate students in analytic and algebraic number theory, and provides a strong foundation for further research in this area.

Extremal Polynomials and Riemann Surfaces

Автор: Andrei Bogatyrev; Nikolai Kruzhilin
Название: Extremal Polynomials and Riemann Surfaces
ISBN: 364244332X ISBN-13(EAN): 9783642443329
Издательство: Springer
Рейтинг:
Цена: 13275.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book develops the classical Chebyshev`s approach which gives analytical representation for the solution in terms of Riemann surfaces. It includes numerous problems, exercises, and illustrations.

Computational Approach to Riemann Surfaces

Автор: Bobenko
Название: Computational Approach to Riemann Surfaces
ISBN: 3642174124 ISBN-13(EAN): 9783642174124
Издательство: Springer
Рейтинг:
Цена: 6282.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume offers a well-structured overview of existent computational approaches to Riemann surfaces and those currently in development. The authors of the contributions represent the groups providing publically available numerical codes in this field. Thus this volume illustrates which software tools are available and how they can be used in practice. In addition examples for solutions to partial differential equations and in surface theory are presented. The intended audience of this book is twofold. It can be used as a textbook for a graduate course in numerics of Riemann surfaces, in which case the standard undergraduate background, i.e., calculus and linear algebra, is required. In particular, no knowledge of the theory of Riemann surfaces is expected; the necessary background in this theory is contained in the Introduction chapter. At the same time, this book is also intended for specialists in geometry and mathematical physics applying the theory of Riemann surfaces in their research. It is the first book on numerics of Riemann surfaces that reflects the progress made in this field during the last decade, and it contains original results. There are a growing number of applications that involve the evaluation of concrete characteristics of models analytically described in terms of Riemann surfaces. Many problem settings and computations in this volume are motivated by such concrete applications in geometry and mathematical physics.

Riemann Surfaces and Algebraic Curves

Автор: Cavalieri
Название: Riemann Surfaces and Algebraic Curves
ISBN: 110714924X ISBN-13(EAN): 9781107149243
Издательство: Cambridge Academ
Рейтинг:
Цена: 17424.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field in algebraic geometry. Designed for undergraduate study, this classroom-tested text demonstrates the connections between diverse areas of mathematics and features short essays by guest writers as well as over 100 exercises for the reader.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия