Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings, Thuy T. Pham


Варианты приобретения
Цена: 16769.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Thuy T. Pham
Название:  Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings
ISBN: 9783030075187
Издательство: Springer
Классификация:





ISBN-10: 3030075184
Обложка/Формат: Soft cover
Страницы: 107
Вес: 0.20 кг.
Дата издания: 2019
Серия: Springer Theses
Язык: English
Издание: Softcover reprint of
Иллюстрации: 32 illustrations, color; 3 illustrations, black and white; xv, 107 p. 35 illus., 32 illus. in color.
Размер: 234 x 156 x 7
Читательская аудитория: General (us: trade)
Основная тема: Engineering
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book describes efforts to improve subject-independent automated classification techniques using a better feature extraction method and a more efficient model of classification. It evaluates three popular saliency criteria for feature selection, showing that they share common limitations, including time-consuming and subjective manual de-facto standard practice, and that existing automated efforts have been predominantly used for subject dependent setting. It then proposes a novel approach for anomaly detection, demonstrating its effectiveness and accuracy for automated classification of biomedical data, and arguing its applicability to a wider range of unsupervised machine learning applications in subject-independent settings.
Дополнительное описание: Introduction .- Background .- Algorithms .- Point Anomaly Detection: Application to Freezing of Gait Monitoring .- Collective Anomaly Detection: Application to Respiratory Artefact Removals.- Spike Sorting: Application to Motor Unit Action Potential D



Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings

Автор: Thuy T. Pham
Название: Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings
ISBN: 3319986740 ISBN-13(EAN): 9783319986746
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book describes efforts to improve subject-independent automated classification techniques using a better feature extraction method and a more efficient model of classification. It evaluates three popular saliency criteria for feature selection, showing that they share common limitations, including time-consuming and subjective manual de-facto standard practice, and that existing automated efforts have been predominantly used for subject dependent setting. It then proposes a novel approach for anomaly detection, demonstrating its effectiveness and accuracy for automated classification of biomedical data, and arguing its applicability to a wider range of unsupervised machine learning applications in subject-independent settings.

Machine Learning Models and Algorithms for Big Data Classification

Автор: Shan Suthaharan
Название: Machine Learning Models and Algorithms for Big Data Classification
ISBN: 1489978526 ISBN-13(EAN): 9781489978523
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents machine learning models and algorithms to address big data classification problems. The first part mainly focuses on the topics that are needed to help analyze and understand data and big data. The third part presents the topics required to understand and select machine learning techniques to classify big data.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия