Описание: This book describes efforts to improve subject-independent automated classification techniques using a better feature extraction method and a more efficient model of classification. It evaluates three popular saliency criteria for feature selection, showing that they share common limitations, including time-consuming and subjective manual de-facto standard practice, and that existing automated efforts have been predominantly used for subject dependent setting. It then proposes a novel approach for anomaly detection, demonstrating its effectiveness and accuracy for automated classification of biomedical data, and arguing its applicability to a wider range of unsupervised machine learning applications in subject-independent settings.
Описание: This book presents machine learning models and algorithms to address big data classification problems. The first part mainly focuses on the topics that are needed to help analyze and understand data and big data. The third part presents the topics required to understand and select machine learning techniques to classify big data.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru