Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Scale Space and Variational Methods in Computer Vision, Jan Lellmann; Martin Burger; Jan Modersitzki


Варианты приобретения
Цена: 6986.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Jan Lellmann; Martin Burger; Jan Modersitzki
Название:  Scale Space and Variational Methods in Computer Vision
ISBN: 9783030223670
Издательство: Springer
Классификация:



ISBN-10: 3030223671
Обложка/Формат: Soft cover
Страницы: 574
Вес: 0.90 кг.
Дата издания: 2019
Серия: Image Processing, Computer Vision, Pattern Recognition, and Graphics
Язык: English
Издание: 1st ed. 2019
Иллюстрации: 153 illustrations, color; 149 illustrations, black and white; xvii, 574 p. 302 illus., 153 illus. in color.
Размер: 234 x 156 x 31
Читательская аудитория: Professional & vocational
Основная тема: Computer Science
Подзаголовок: 7th International Conference, SSVM 2019, Hofgeismar, Germany, June 30 – July 4, 2019, Proceedings
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book constitutes the proceedings of the 7th International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2019, held in Hofgeismar, Germany, in June/July 2019.
The 44 papers included in this volume were carefully reviewed and selected for inclusion in this book. They were organized in topical sections named: 3D vision and feature analysis; inpainting, interpolation and compression; inverse problems in imaging; optimization methods in imaging; PDEs and level-set methods; registration and reconstruction; scale-space methods; segmentation and labeling; and variational methods.



Linear Algebra and Learning from Data

Автор: Strang Gilbert
Название: Linear Algebra and Learning from Data
ISBN: 0692196382 ISBN-13(EAN): 9780692196380
Издательство: Cambridge Academ
Рейтинг:
Цена: 9978.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special matrices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation.

Energy Minimization Methods in Computer Vision and Pattern Recognition

Автор: Pelillo
Название: Energy Minimization Methods in Computer Vision and Pattern Recognition
ISBN: 3319781987 ISBN-13(EAN): 9783319781983
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume constitutes the refereed proceedings of the 11th International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR 2017, held in Venice, Italy, in October/November 2017. The 37 revised full papers were carefully reviewed and selected from 51 submissions.

Variational Methods in Imaging

Автор: Otmar Scherzer; Markus Grasmair; Harald Grossauer;
Название: Variational Methods in Imaging
ISBN: 1441921664 ISBN-13(EAN): 9781441921666
Издательство: Springer
Рейтинг:
Цена: 9781.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: With its mathematically rigorous presentation, this book is a detailed treatment of the approach from an inverse problems point of view. It is geared towards graduate students and researchers in applied mathematics and can serve as a text for graduate courses.

Extreme Value Theory-Based Methods for Visual Recognition

Автор: Walter J. Scheirer
Название: Extreme Value Theory-Based Methods for Visual Recognition
ISBN: 1627057005 ISBN-13(EAN): 9781627057004
Издательство: Turpin
Рейтинг:
Цена: 10340.00 р.
Наличие на складе: Невозможна поставка.

Описание: A common feature of many approaches to modeling sensory statistics is an emphasis on capturing the ""average."" From early representations in the brain, to highly abstracted class categories in machine learning for classification tasks, central-tendency models based on the Gaussian distribution are a seemingly natural and obvious choice for modeling sensory data. However, insights from neuroscience, psychology, and computer vision suggest an alternate strategy: preferentially focusing representational resources on the extremes of the distribution of sensory inputs. The notion of treating extrema near a decision boundary as features is not necessarily new, but a comprehensive statistical theory of recognition based on extrema is only now just emerging in the computer vision literature. This book begins by introducing the statistical Extreme Value Theory (EVT) for visual recognition. In contrast to central-tendency modeling, it is hypothesized that distributions near decision boundaries form a more powerful model for recognition tasks by focusing coding resources on data that are arguably the most diagnostic features. EVT has several important properties: strong statistical grounding, better modeling accuracy near decision boundaries than Gaussian modeling, the ability to model asymmetric decision boundaries, and accurate prediction of the probability of an event beyond our experience. The second part of the book uses the theory to describe a new class of machine learning algorithms for decision making that are a measurable advance beyond the state-of-the-art. This includes methods for post-recognition score analysis, information fusion, multi-attribute spaces, and calibration of supervised machine learning algorithms.

Efficiency And Scalability Methods For Computational Intellect

Автор: Igelnik & Zurada
Название: Efficiency And Scalability Methods For Computational Intellect
ISBN: 1466639423 ISBN-13(EAN): 9781466639423
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 28413.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Computational modelling and simulation has developed and expanded into a diverse range of fields such as digital signal processing, image processing, robotics, systems biology, and many more; enhancing the need for a diversifying problem solving applications in this area. <em>Efficiency and Scalability Methods for Computational Intellect</em> presents various theories and methods for approaching the problem of modelling and simulating intellect in order to target computation efficiency and scalability of proposed methods. Researchers, instructors, and graduate students will benefit from this current research and will in turn be able to apply the knowledge in an effective manner to gain an understanding of how to improve this field.

Energy Minimization Methods in Computer Vision and Pattern Recognition

Автор: Anders Heyden; Fredrik Kahl; Carl Olsson; Magnus O
Название: Energy Minimization Methods in Computer Vision and Pattern Recognition
ISBN: 3642403948 ISBN-13(EAN): 9783642403941
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume constitutes the refereed proceedings of the 9th International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR 2013, held in Lund, Sweden, in August 2013. The papers are organized in topical sections on Medical Imaging;

Partial Differential Equation Methods for Image Inpainting

Автор: Schоnlieb
Название: Partial Differential Equation Methods for Image Inpainting
ISBN: 1107001005 ISBN-13(EAN): 9781107001008
Издательство: Cambridge Academ
Рейтинг:
Цена: 12195.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is concerned with digital image processing techniques that use partial differential equations (PDEs) for the task of image 'inpainting', an artistic term for virtual image restoration or interpolation, whereby missing or occluded parts in images are completed based on information provided by intact parts. Computer graphic designers, artists and photographers have long used manual inpainting to restore damaged paintings or manipulate photographs. Today, mathematicians apply powerful methods based on PDEs to automate this task. This book introduces the mathematical concept of PDEs for virtual image restoration. It gives the full picture, from the first modelling steps originating in Gestalt theory and arts restoration to the analysis of resulting PDE models, numerical realisation and real-world application. This broad approach also gives insight into functional analysis, variational calculus, optimisation and numerical analysis and will appeal to researchers and graduate students in mathematics with an interest in image processing and mathematical analysis.

Efficient Algorithms for Global Optimization Methods in Computer Vision

Автор: Andr?s Bruhn; Thomas Pock; Xue-Cheng Tai
Название: Efficient Algorithms for Global Optimization Methods in Computer Vision
ISBN: 3642547737 ISBN-13(EAN): 9783642547737
Издательство: Springer
Рейтинг:
Цена: 5590.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the thoroughly refereed post-conference proceedings of the International Dagstuhl-Seminar on Efficient Algorithms for Global Optimization Methods in Computer Vision, held in Dagstuhl Castle, Germany, in November 2011.

Energy Minimization Methods in Computer Vision and Pattern Recognition

Автор: Xue-Cheng Tai; Egil Bae; Tony F. Chan; Marius Lysa
Название: Energy Minimization Methods in Computer Vision and Pattern Recognition
ISBN: 3319146114 ISBN-13(EAN): 9783319146119
Издательство: Springer
Рейтинг:
Цена: 10062.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume constitutes the refereed proceedings of the 10th International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR 2015, held in Hong Kong, China, in January 2015. The 36 revised full papers were carefully reviewed and selected from 45 submissions. PDE and variational methods;

Computer Vision Methods for Fast Image Classification and Retrieval

Автор: Rafal Scherer
Название: Computer Vision Methods for Fast Image Classification and Retrieval
ISBN: 3030121941 ISBN-13(EAN): 9783030121945
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

The book presents selected methods for accelerating image retrieval and classification in large collections of images using what are referred to as ‘hand-crafted features.’ It introduces readers to novel rapid image description methods based on local and global features, as well as several techniques for comparing images.
Developing content-based image comparison, retrieval and classification methods that simulate human visual perception is an arduous and complex process. The book’s main focus is on the application of these methods in a relational database context. The methods presented are suitable for both general-type and medical images. Offering a valuable textbook for upper-level undergraduate or graduate-level courses on computer science or engineering, as well as a guide for computer vision researchers, the book focuses on techniques that work under real-world large-dataset conditions.
Scale Space and Variational Methods in Computer Vision

Автор: Xue-Cheng Tai; Knut Morken; Marius Lysaker; Knut-A
Название: Scale Space and Variational Methods in Computer Vision
ISBN: 3642022553 ISBN-13(EAN): 9783642022555
Издательство: Springer
Рейтинг:
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book contains 71 original, scienti?c articles that address state-of-the-art researchrelatedto scale space and variationalmethods for image processing and computer vision.

Scale-Space Theory in Computer Vision

Автор: Tony Lindeberg
Название: Scale-Space Theory in Computer Vision
ISBN: 1441951393 ISBN-13(EAN): 9781441951397
Издательство: Springer
Рейтинг:
Цена: 18028.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The problem of scale pervades both the natural sciences and the vi- sual arts. The earliest scientific discussions concentrate on visual per- ception (much like today ) and occur in Euclid's (c. 300 B. C. ) Optics and Lucretius' (c. 100-55 B. C. ) On the Nature of the Universe. A very clear account in the spirit of modern "scale-space theory" is presented by Boscovitz (in 1758), with wide ranging applications to mathemat- ics, physics and geography. Early applications occur in the cartographic problem of "generalization," the central idea being that a map in order to be useful has to be a "generalized" (coarse grained) representation of the actual terrain (Miller and Voskuil 1964). Broadening the scope asks for progressive summarizing. Very much the same problem occurs in the (realistic) artistic rendering of scenes. Artistic generalization has been analyzed in surprising detail by John Ruskin (in his Modern Painters), who even describes some of the more intricate generic "scale-space sin- gularities" in detail: Where the ancients considered only the merging of blobs under blurring, Ruskin discusses the case where a blob splits off another one when the resolution is decreased, a case that has given rise to confusion even in the modern literature.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия