Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Invariant Measures for Stochastic Nonlinear Schr?dinger Equations, Jialin Hong; Xu Wang


Варианты приобретения
Цена: 6986.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Jialin Hong; Xu Wang
Название:  Invariant Measures for Stochastic Nonlinear Schr?dinger Equations
ISBN: 9789813290686
Издательство: Springer
Классификация:




ISBN-10: 9813290684
Обложка/Формат: Soft cover
Страницы: 220
Вес: 0.37 кг.
Дата издания: 2019
Серия: Lecture Notes in Mathematics
Язык: English
Издание: 1st ed. 2019
Иллюстрации: 15 tables, color; 13 illustrations, color; 1 illustrations, black and white; xiv, 220 p. 14 illus., 13 illus. in color.
Размер: 234 x 156 x 13
Читательская аудитория: Professional & vocational
Основная тема: Mathematics
Подзаголовок: Numerical Approximations and Symplectic Structures
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book provides some recent advance in the study of stochastic nonlinear Schr?dinger equations and their numerical approximations, including the well-posedness, ergodicity, symplecticity and multi-symplecticity. It gives an accessible overview of the existence and uniqueness of invariant measures for stochastic differential equations, introduces geometric structures including symplecticity and (conformal) multi-symplecticity for nonlinear Schr?dinger equations and their numerical approximations, and studies the properties and convergence errors of numerical methods for stochastic nonlinear Schr?dinger equations.
This book will appeal to researchers who are interested in numerical analysis, stochastic analysis, ergodic theory, partial differential equation theory, etc.

Дополнительное описание: Invariant measures and ergodicity.- Invariant measures for stochastic differential equations.- Invariant measures for stochastic nonlinear Schr?dinger equations.- Geometric structures and numerical schemes for nonlinear Schr?dinger equations.- Numerical i



Schr?dinger Equations in Nonlinear Systems

Автор: Wu-Ming Liu; Emmanuel Kengne
Название: Schr?dinger Equations in Nonlinear Systems
ISBN: 9811365806 ISBN-13(EAN): 9789811365805
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book explores the diverse types of Schr?dinger equations that appear in nonlinear systems in general, with a specific focus on nonlinear transmission networks and Bose–Einstein Condensates. In the context of nonlinear transmission networks, it employs various methods to rigorously model the phenomena of modulated matter-wave propagation in the network, leading to nonlinear Schr?dinger (NLS) equations. Modeling these phenomena is largely based on the reductive perturbation method, and the derived NLS equations are then used to methodically investigate the dynamics of matter-wave solitons in the network. In the context of Bose–Einstein condensates (BECs), the book analyzes the dynamical properties of NLS equations with the external potential of different types, which govern the dynamics of modulated matter-waves in BECs with either two-body interactions or both two- and three-body interatomic interactions. It also discusses the method of investigating both the well-posedness and the ill-posedness of the boundary problem for linear and nonlinear Schr?dinger equations and presents new results. Using simple examples, it then illustrates the results on the boundary problems. For both nonlinear transmission networks and Bose–Einstein condensates, the results obtained are supplemented by numerical calculations and presented as figures.

Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics

Автор: Galaktionov, Victor A. , Svirshchevskii, Sergey
Название: Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics
ISBN: 0367389975 ISBN-13(EAN): 9780367389970
Издательство: Taylor&Francis
Рейтинг:
Цена: 9798.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics is the first book to provide a systematic construction of exact solutions via linear invariant subspaces for nonlinear differential operators. Acting as a guide to nonlinear evolution equations and models from physics and mechanics, the book focuses on the existence of new exact solutions on linear invariant subspaces for nonlinear operators and their crucial new properties.

This practical reference deals with various partial differential equations (PDEs) and models that exhibit some common nonlinear invariant features. It begins with classical as well as more recent examples of solutions on invariant subspaces. In the remainder of the book, the authors develop several techniques for constructing exact solutions of various nonlinear PDEs, including reaction-diffusion and gas dynamics models, thin-film and Kuramoto-Sivashinsky equations, nonlinear dispersion (compacton) equations, KdV-type and Harry Dym models, quasilinear magma equations, and Green-Naghdi equations. Using exact solutions, they describe the evolution properties of blow-up or extinction phenomena, finite interface propagation, and the oscillatory, changing sign behavior of weak solutions near interfaces for nonlinear PDEs of various types and orders.

The techniques surveyed in Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics serve as a preliminary introduction to the general theory of nonlinear evolution PDEs of different orders and types.

Evolution Equations of Hyperbolic and Schr?dinger Type

Автор: Michael Ruzhansky; Mitsuru Sugimoto; Jens Wirth
Название: Evolution Equations of Hyperbolic and Schr?dinger Type
ISBN: 303480802X ISBN-13(EAN): 9783034808026
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Evolution equations of hyperbolic or more general p-evolution type form an active field of current research. The book gives an overview of a variety of ongoing current research in the field and, therefore, allows researchers as well as students to grasp new aspects and broaden their understanding of the area.

Schr?dinger Equations and Diffusion Theory

Автор: M. Nagasawa
Название: Schr?dinger Equations and Diffusion Theory
ISBN: 3034896840 ISBN-13(EAN): 9783034896849
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Schrodinger Equations and Diffusion Theory addresses the question "What is the Schrodinger equation?" in terms of diffusion processes, and shows that the Schrodinger equation and diffusion equations in duality are equivalent. In turn, Schrodinger's conjecture of 1931 is solved. The theory of diffusion processes for the Schrodinger equation tell us that we must go further into the theory of systems of (infinitely) many interacting quantum (diffusion) particles.
The method of relative entropy and the theory of transformations enable us to construct severely singular diffusion processes which appear to be equivalent to Schrodinger equations.
The theory of large deviations and the propagation of chaos of interacting diffusion particles reveal the statistical mechanical nature of the Schrodinger equation, namely, quantum mechanics.
The text is practically self-contained and requires only an elementary knowledge of probability theory at the graduate level.

Invariant Manifolds and Fibrations for Perturbed Nonlinear Schr?dinger Equations

Автор: Charles Li; Stephen Wiggins
Название: Invariant Manifolds and Fibrations for Perturbed Nonlinear Schr?dinger Equations
ISBN: 0387949259 ISBN-13(EAN): 9780387949253
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In this monograph the authors present detailed and pedagogic proofs of persistence theorems for normally hyperbolic invariant manifolds and their stable and unstable manifolds for classes of perturbations of the NLS equation, as well as for the existence and persistence of fibrations of these invariant manifolds.

Invariant Manifolds and Fibrations for Perturbed Nonlinear Schr?dinger Equations

Автор: Charles Li; Stephen Wiggins
Название: Invariant Manifolds and Fibrations for Perturbed Nonlinear Schr?dinger Equations
ISBN: 1461273072 ISBN-13(EAN): 9781461273073
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In this monograph the authors present detailed and pedagogic proofs of persistence theorems for normally hyperbolic invariant manifolds and their stable and unstable manifolds for classes of perturbations of the NLS equation, as well as for the existence and persistence of fibrations of these invariant manifolds.

The Nonlinear Schr?dinger Equation

Автор: Catherine Sulem; Pierre-Louis Sulem
Название: The Nonlinear Schr?dinger Equation
ISBN: 1475773072 ISBN-13(EAN): 9781475773071
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Filling the gap between the mathematical literature and applications to domains, the authors have chosen to address the problem of wave collapse by several methods ranging from rigorous mathematical analysis to formal aymptotic expansions and numerical simulations.

Schr?dinger Equations and Diffusion Theory

Автор: Masao Nagasawa
Название: Schr?dinger Equations and Diffusion Theory
ISBN: 3034805594 ISBN-13(EAN): 9783034805599
Издательство: Springer
Рейтинг:
Цена: 10480.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Self-contained and structurally coherent, this introduction to the theory and applications of diffusion processes deploys them to analyze Schrodinger`s equations, using relative entropy and the theory of transformations to forge apparently identical processes.

Approximation of Stochastic Invariant Manifolds

Автор: Micka?l D. Chekroun; Honghu Liu; Shouhong Wang
Название: Approximation of Stochastic Invariant Manifolds
ISBN: 3319124951 ISBN-13(EAN): 9783319124957
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This first volume is concerned with the analytic derivation of explicit formulas for the leading-order Taylor approximations of (local) stochastic invariant manifolds associated with a broad class of nonlinear stochastic partial differential equations.

Continuous And Discontinuous Piecewise-smooth One-dimensional Maps: Invariant Sets And Bifurcation Structures

Автор: Gardini Laura, Avrutin Viktor, Sushko Iryna, Tramontana Fabio
Название: Continuous And Discontinuous Piecewise-smooth One-dimensional Maps: Invariant Sets And Bifurcation Structures
ISBN: 9814368822 ISBN-13(EAN): 9789814368827
Издательство: World Scientific Publishing
Рейтинг:
Цена: 34056.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Focuses on both continuous and discontinuous one-dimensional piecewise-linear maps and summarizes the results related to bifurcation structures in regular and robust chaotic domains.

The Schr?dinger and Riccati Equations

Автор: Serafin Fraga; Jose M. Garcia de la Vega; Eric S.
Название: The Schr?dinger and Riccati Equations
ISBN: 3540651055 ISBN-13(EAN): 9783540651055
Издательство: Springer
Рейтинг:
Цена: 14365.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The linear Schroedinger equation is central to Quantum Chemistry. The Riccati equation is used to study the one-dimensional Schroedinger equation. The authors develop the Schroedinger-Riccati equation as an approach to determine solutions of the time-independent, linear Schroedinger equation.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия