Описание: Provides an in-depth and even treatment of the three pillars of computational intelligence and how they relate to one another This book covers the three fundamental topics that form the basis of computational intelligence: neural networks, fuzzy systems, and evolutionary computation.
Описание: This book provides theoretical and practical knowledge about a methodology for evolutionary algorithm-based search strategy with the integration of several machine learning and deep learning techniques. These include convolutional neural networks, Gr?bner bases, relevance vector machines, transfer learning, bagging and boosting methods, clustering techniques (affinity propagation), and belief networks, among others. The development of such tools contributes to better optimizing methodologies. Beginning with the essentials of evolutionary algorithms and covering interdisciplinary research topics, the contents of this book are valuable for different classes of readers: novice, intermediate, and also expert readers from related fields.Following the chapters on introduction and basic methods, Chapter 3 details a new research direction, i.e., neuro-evolution, an evolutionary method for the generation of deep neural networks, and also describes how evolutionary methods are extended in combination with machine learning techniques. Chapter 4 includes novel methods such as particle swarm optimization based on affinity propagation (PSOAP), and transfer learning for differential evolution (TRADE), another machine learning approach for extending differential evolution.The last chapter is dedicated to the state of the art in gene regulatory network (GRN) research as one of the most interesting and active research fields. The author describes an evolving reaction network, which expands the neuro-evolution methodology to produce a type of genetic network suitable for biochemical systems and has succeeded in designing genetic circuits in synthetic biology. The author also presents real-world GRN application to several artificial intelligent tasks, proposing a framework of motion generation by GRNs (MONGERN), which evolves GRNs to operate a real humanoid robot.
Описание: This book not only provides a comprehensive introduction to neural-based PCA methods in control science, but also presents many novel PCA algorithms and their extensions and generalizations, e.g., dual purpose, coupled PCA, GED, neural based SVD algorithms, etc.
Автор: Skorohod Boris. A Название: Diffuse Algorithms for Neural and Neuro-Fuzzy Networks ISBN: 0128126094 ISBN-13(EAN): 9780128126097 Издательство: Elsevier Science Рейтинг: Цена: 15159.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Diffuse Algorithms for Neural and Neuro-Fuzzy Networks: With Applications in Control Engineering and Signal Processing presents new approaches to training neural and neuro-fuzzy networks. This book is divided into six chapters. Chapter 1 consists of plants models reviews, problems statements, and known results that are relevant to the subject matter of this book. Chapter 2 considers the RLS behavior on a finite interval. The theoretical results are illustrated by examples of solving problems of identification, control, and signal processing.
Properties of the bias, the matrix of second-order moments and the normalized average squared error of the RLS algorithm on a finite time interval are studied in Chapter 3. Chapter 4 deals with the problem of multilayer neural and neuro-fuzzy networks training with simultaneous estimation of the hidden and output layers parameters. The theoretical results are illustrated with the examples of pattern recognition, identification of nonlinear static, and dynamic plants.
Chapter 5 considers the estimation problem of the state and the parameters of the discrete dynamic plants in the absence of a priori statistical information about initial conditions or its incompletion. The Kalman filter and the extended Kalman filter diffuse analogues are obtained. Finally, Chapter 6 provides examples of the use of diffuse algorithms for solving problems in various engineering applications. This book is ideal for researchers and graduate students in control, signal processing, and machine learning.
Описание: Presenting papers from the IEEE/Nagoya-University World Wisepersons Workshop, this volume covers the combination of fuzzy logic and neural networks. It looks at how to combine fuzzy logic and genetic algorithms, and includes challenging applications of fuzzy systems and of fuzzy-genetic algorithms.
Want to predict what your customers want to buy without them having to tell you? Want to accurately forecast sales trends for your marketing team better than any employee could ever do? Then keep reading.
You've heard it before. The rise of artificial intelligence and how it will soon replace human beings and take away our jobs. What exactly is it capable of and how does this impact me? The real question you should be asking yourself is how can I use this to my advantage? How can I use machine learning to benefit my business and surpass my business goals? This book has the answer.
Designed for the tech novice, this book will break down the fundamentals of machine learning and what it truly means. You will learn to leverage neural networks, predictive modelling, and data mining algorithms, illustrated with real-world applications for finance, business and marketing.
Machine learning isn't just for scientists or engineers anymore. It's become accessible to anyone, and you can discover it's benefits for your business.
In Machine Learning for Beginners 2019, we will reveal:
✅ The fundamentals of machine learning.
✅ Each of the buzzwords defined
✅ 20 real-world applications of machine learning.
✅ How to predict when a customer is about to churn (and prevent it from happening).
✅ How to "upsell" to your customers and close more sales.
✅ How to deal with missing data or poor data.
✅ Where to find free datasets and libraries.
✅ Exactly which machine learning libraries you need.
✅ And much much more
I know you might be overwhelmed at this point, but I assure you this book has been designed for absolute beginners. Everything is in plain English. There is no code, so no coding experience is required. You won't walk away a machine learning god, but you will walk away with key strategies you can implement right away to improve your business.
���� If you are ready to start making big changes to your business, scroll up and click buy. ����
Описание: While cognitive informatics and natural intelligence are receiving greater attention by researchers, multidisciplinary approaches still struggle with fundamental problems involving psychology and neurobiological processes of the brain. Examining the difficulties of certain approaches using the tools already available is vital for propelling knowledge forward and making further strides.
Innovations, Algorithms, and Applications in Cognitive Informatics and Natural Intelligence is a collection of innovative research that examines the enhancement of human cognitive performance using emerging technologies. Featuring research on topics such as parallel computing, neuroscience, and signal processing, this book is ideally designed for engineers, computer scientists, programmers, academicians, researchers, and students.
Описание: While cognitive informatics and natural intelligence are receiving greater attention by researchers, multidisciplinary approaches still struggle with fundamental problems involving psychology and neurobiological processes of the brain. Examining the difficulties of certain approaches using the tools already available is vital for propelling knowledge forward and making further strides.
Innovations, Algorithms, and Applications in Cognitive Informatics and Natural Intelligence is a collection of innovative research that examines the enhancement of human cognitive performance using emerging technologies. Featuring research on topics such as parallel computing, neuroscience, and signal processing, this book is ideally designed for engineers, computer scientists, programmers, academicians, researchers, and students.
Автор: Mirjalili Название: Evolutionary Algorithms and Neural Networks ISBN: 3319930249 ISBN-13(EAN): 9783319930244 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book introduces readers to the fundamentals of artificial neural networks, with a special emphasis on evolutionary algorithms. It then proposes evolutionary version of several types of neural networks such as feed forward neural networks, radial basis function networks, as well as recurrent neural networks and multi-later perceptron.
Автор: Kaushik Kumar and J. Paulo Davim Название: Optimization using evolutionary algorithms and metaheuristics ISBN: 0367260441 ISBN-13(EAN): 9780367260446 Издательство: Taylor&Francis Рейтинг: Цена: 25265.00 р. Наличие на складе: Поставка под заказ.
Описание: This book covers developments and advances of algorithm based optimization techniques These techniques were only used for non-engineering problems. This book applies them to engineering problems.
Автор: Takeshi Furuhashi; Yoshiki Uchikawa Название: Fuzzy Logic, Neural Networks, and Evolutionary Computation ISBN: 3540619887 ISBN-13(EAN): 9783540619888 Издательство: Springer Рейтинг: Цена: 8384.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume contains a selection of 12 revised papers chosen from the 4th IEEE/Nagoya University World Wisepersons Workshop held in Nagoya, Japan, November 14-15, 1995. The papers presented are organized into sections including fuzzy and evolutionary computation, and fuzzy and learning automata.
Описание: This book provides theoretical and practical knowledge about a methodology for evolutionary algorithm-based search strategy with the integration of several machine learning and deep learning techniques. These include convolutional neural networks, Gr?bner bases, relevance vector machines, transfer learning, bagging and boosting methods, clustering techniques (affinity propagation), and belief networks, among others. The development of such tools contributes to better optimizing methodologies. Beginning with the essentials of evolutionary algorithms and covering interdisciplinary research topics, the contents of this book are valuable for different classes of readers: novice, intermediate, and also expert readers from related fields.Following the chapters on introduction and basic methods, Chapter 3 details a new research direction, i.e., neuro-evolution, an evolutionary method for the generation of deep neural networks, and also describes how evolutionary methods are extended in combination with machine learning techniques. Chapter 4 includes novel methods such as particle swarm optimization based on affinity propagation (PSOAP), and transfer learning for differential evolution (TRADE), another machine learning approach for extending differential evolution.The last chapter is dedicated to the state of the art in gene regulatory network (GRN) research as one of the most interesting and active research fields. The author describes an evolving reaction network, which expands the neuro-evolution methodology to produce a type of genetic network suitable for biochemical systems and has succeeded in designing genetic circuits in synthetic biology. The author also presents real-world GRN application to several artificial intelligent tasks, proposing a framework of motion generation by GRNs (MONGERN), which evolves GRNs to operate a real humanoid robot.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru