Medical Image Computing and Computer Assisted Intervention – MICCAI 2019, Dinggang Shen; Tianming Liu; Terry M. Peters; Lawr
Автор: Dinggang Shen; Tianming Liu; Terry M. Peters; Lawr Название: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 ISBN: 3030322254 ISBN-13(EAN): 9783030322250 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The six-volume set LNCS 11764, 11765, 11766, 11767, 11768, and 11769 constitutes the refereed proceedings of the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019, held in Shenzhen, China, in October 2019.The 539 revised full papers presented were carefully reviewed and selected from 1730 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: optical imaging; endoscopy; microscopy.Part II: image segmentation; image registration; cardiovascular imaging; growth, development, atrophy and progression.Part III: neuroimage reconstruction and synthesis; neuroimage segmentation; diffusion weighted magnetic resonance imaging; functional neuroimaging (fMRI); miscellaneous neuroimaging.Part IV: shape; prediction; detection and localization; machine learning; computer-aided diagnosis; image reconstruction and synthesis.Part V: computer assisted interventions; MIC meets CAI. Part VI: computed tomography; X-ray imaging.
Автор: Alejandro F. Frangi; Julia A. Schnabel; Christos D Название: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 ISBN: 303000936X ISBN-13(EAN): 9783030009366 Издательство: Springer Рейтинг: Цена: 13695.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The four-volume set LNCS 11070, 11071, 11072, and 11073 constitutes the refereed proceedings of the 21st International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2018, held in Granada, Spain, in September 2018.The 373 revised full papers presented were carefully reviewed and selected from 1068 submissions in a double-blind review process. The papers have been organized in the following topical sections: Part I: Image Quality and Artefacts; Image Reconstruction Methods; Machine Learning in Medical Imaging; Statistical Analysis for Medical Imaging; Image Registration Methods. Part II: Optical and Histology Applications: Optical Imaging Applications; Histology Applications; Microscopy Applications; Optical Coherence Tomography and Other Optical Imaging Applications. Cardiac, Chest and Abdominal Applications: Cardiac Imaging Applications: Colorectal, Kidney and Liver Imaging Applications; Lung Imaging Applications; Breast Imaging Applications; Other Abdominal Applications. Part III: Diffusion Tensor Imaging and Functional MRI: Diffusion Tensor Imaging; Diffusion Weighted Imaging; Functional MRI; Human Connectome. Neuroimaging and Brain Segmentation Methods: Neuroimaging; Brain Segmentation Methods.Part IV: Computer Assisted Intervention: Image Guided Interventions and Surgery; Surgical Planning, Simulation and Work Flow Analysis; Visualization and Augmented Reality. Image Segmentation Methods: General Image Segmentation Methods, Measures and Applications; Multi-Organ Segmentation; Abdominal Segmentation Methods; Cardiac Segmentation Methods; Chest, Lung and Spine Segmentation; Other Segmentation Applications.
Автор: Dinggang Shen; Tianming Liu; Terry M. Peters; Lawr Название: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 ISBN: 3030322440 ISBN-13(EAN): 9783030322441 Издательство: Springer Рейтинг: Цена: 14813.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The six-volume set LNCS 11764, 11765, 11766, 11767, 11768, and 11769 constitutes the refereed proceedings of the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019, held in Shenzhen, China, in October 2019.The 539 revised full papers presented were carefully reviewed and selected from 1730 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: optical imaging; endoscopy; microscopy.Part II: image segmentation; image registration; cardiovascular imaging; growth, development, atrophy and progression.Part III: neuroimage reconstruction and synthesis; neuroimage segmentation; diffusion weighted magnetic resonance imaging; functional neuroimaging (fMRI); miscellaneous neuroimaging.Part IV: shape; prediction; detection and localization; machine learning; computer-aided diagnosis; image reconstruction and synthesis.Part V: computer assisted interventions; MIC meets CAI.Part VI: computed tomography; X-ray imaging.
Автор: Dinggang Shen; Tianming Liu; Terry M. Peters; Lawr Название: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 ISBN: 3030322475 ISBN-13(EAN): 9783030322472 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Neuroimage Reconstruction and Synthesis.- Isotropic MRI Super-Resolution Reconstruction with Multi-Scale Gradient Field Prior.- A Two-Stage Multi-Loss Super-Resolution Network For Arterial Spin Labeling Magnetic Resonance Imaging.- Model Learning: Primal Dual Networks for Fast MR imaging.- Model-based Convolutional De-Aliasing Network Learning for Parallel MR Imaging.- Joint Reconstruction of PET + Parallel-MRI in a Bayesian Coupled-Dictionary MRF Framework.- Deep Learning Based Framework for Direct Reconstruction of PET Images.- Nonuniform Variational Network: Deep Learning for Accelerated Nonuniform MR Image Reconstruction.- Reconstruction of Isotropic High-Resolution MR Image from Multiple Anisotropic Scans using Sparse Fidelity Loss and Adversarial Regularization.- Single Image Based Reconstruction of High Field-like MR Images.- Deep Neural Network for QSM Background Field Removal.- RinQ Fingerprinting: Recurrence-informed Quantile Networks for Magnetic Resonance Fingerprinting.- RCA-U-Net: Residual Channel Attention U-Net for Fast Tissue Quantification in Magnetic Resonance Fingerprinting.- GANReDL: Medical Image enhancement using a generative adversarial network with real-order derivative induced loss functions.- Generation of 3D Brain MRI Using Auto-Encoding Generative Adversarial Networks.- Semi-Supervised VAE-GAN for Out-of-Sample Detection Applied to MRI Quality Control.- Disease-Image Specific Generative Adversarial Network for Brain Disease Diagnosis with Incomplete Multi-Modal Neuroimages.- Predicting the Evolution of White Matter Hyperintensities in Brain MRI using Generative Adversarial Networks and Irregularity Map.- CoCa-GAN: Common-feature-learning-based Context-aware Generative Adversarial Network for Glioma Grading.- Degenerative Adversarial NeuroImage Nets: Generating Images that Mimic Disease Progression.- Neuroimage Segmentation.- Scribble-based Hierarchical Weakly Supervised Learning for Brain Tumor Segmentation.- 3D Dilated Multi-Fiber Network for Real-time Brain Tumor Segmentation in MRI.- Refined-Segmentation R-CNN: A Two-stage Convolutional Neural Network for Punctate White Matter Lesion Segmentation in Preterm Infants.- VoteNet: A Deep Learning Label Fusion Method for Multi-Atlas Segmentation.- Weakly Supervised Brain Lesion Segmentation via Attentional Representation Learning.- Scalable Neural Architecture Search for 3D Medical Image Segmentation.- Unified Attentional Generative Adversarial Network for Brain Tumor Segmentation From Multimodal Unpaired Images.- High Resolution Medical Image Segmentation using Data-swapping Method.- X-Net: Brain Stroke Lesion Segmentation Based on Depthwise Separable Convolution and Long-range Dependencies.- Multi-View Semi-supervised 3D Whole Brain Segmentation with a Self-Ensemble Network.- CLCI-Net: Cross-Level Fusion and Context Inference Networks for Lesion Segmentation of Chronic Stroke.- Brain Segmentation from k-space with End-to-end Recurrent Attention Network.- Spatial Warping Network for 3D Segmentation of the Hippocampus in MR Images.- CompareNet: Anatomical Segmentation Network with Deep Non-local Label Fusion.- A Joint 3D+2D Fully Convolutional Framework for Subcortical Segmentation.- U-ReSNet: Ultimate coupling of Registration and Segmentation with deep Nets.- Generative adversarial network for segmentation of motion affected neonatal brain MRI.- Interactive deep editing framework for medical image segmentation.- Multiple Sclerosis Lesion Segmentation with Tiramisu and 2.5D Stacked Slices.- Improving Multi-Atlas Segmentation by Convolutional Neural Network Based Patch Error Estimation.- Unsupervised deep learning for Bayesian brain MRI segmentation.- Online atlasing using an iterative centroid.- ARS-Net: Adaptively Rectified Supervision Network for Automated 3D Ultrasound Image Segmentation.- Complete Fetal Head Compounding from Multi-View 3D Ultrasound.- SegNAS3D: Network Architecture Search with Derivative-Free Glo
Автор: Dinggang Shen; Tianming Liu; Terry M. Peters; Lawr Название: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 ISBN: 303032253X ISBN-13(EAN): 9783030322533 Издательство: Springer Рейтинг: Цена: 12577.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Computer Assisted Interventions.- Robust Cochlear Modiolar Axis Detection in CT.- Learning to Avoid Poor Images: Towards Task-aware C-arm Cone-beam CT Trajectories.- Optimizing Clearance of Bйzier Spline Trajectories for Minimally-Invasive Surgery.- Direct Visual and Haptic Volume Rendering of Medical Data Sets for an Immersive Exploration in Virtual Reality.- Triplet Feature Learning on Endoscopic Video Manifold for Real-time Gastrointestinal Image Retargeting.- A Novel Endoscopic Navigation System: Simultaneous Endoscope and Radial Ultrasound Probe Tracking Without External Trackers.- An Extremely Fast and Precise Convolutional Neural Network for Recognition and Localization of Cataract Surgical Tools.- Semi-autonomous Robotic Anastomoses of Vaginal Cuffs using Marker Enhanced 3D Imaging and Path Planning.- Augmented Reality "X-Ray Vision" for Laparoscopic Surgery using Optical See-Through Head-Mounted Display.- Interactive Endoscopy: A Next-Generation, Streamlined User Interface for Lung Surgery Navigation.- Non-invasive Assessment of In Vivo Auricular Cartilage by Ultrashort Echo Time (UTE) T2* Mapping.- INN: Inflated Neural Networks for IPMN Diagnosis.- Development of an Multi-objective Optimized Planning Method for Microwave Liver Tumor Ablation.- Generating large labeled data sets for laparoscopic image processing tasks using unpaired image-to-image translation.- Mask-MCNet: Instance Segmentation in 3D Point Cloud of Intra-oral Scans.- Physics-based Deep Neural Network for Augmented Reality during Liver Surgery.- Detecting Cannabis-Associated Cognitive Impairment using Resting-state fNIRS.- Cross-Domain Conditional Generative Adversarial Networks for Stereoscopic Hyperrealism in Surgical Training.- A Free-view, 3D Gaze-Guided Robotic Scrub Nurse.- Haptic Modes for Multiparameter Control in Robotic Surgery.- Learning to Detect Collisions for Continuum Manipulators without a Prior Model.- Simulation of Balloon-Expandable Coronary Stent Apposition with Plastic Beam Elements.- Virtual Cardiac Surgical Planning through Hemodynamics Simulation and Design Optimization of Fontan Grafts.- 3D Modelling of the residual freezing for renal cryoablation simulation and prediction.- A generative model of hyperelastic strain energy density functions for real-time simulation of brain tissue deformation.- Variational Mandible Shape Completion for Virtual Surgical Planning.- Markerless Image-to-Face Registration for Untethered Augmented Reality in Head and Neck Surgery.- Towards a first mixed-reality first person point of view needle navigation system.- Concept-Centric Visual Turing Tests for Method Validation.- Transferring from ex-vivo to in-vivo: Instrument Localization in 3D Cardiac Ultrasound Using Pyramid-UNet with Hybrid Loss.- A Sparsely Distributed Intra-cardial Ultrasonic Array for Real-time Endocardial Mapping.- FetusMap: Fetal Pose Estimation in 3D Ultrasound.- Agent with Warm Start and Active Termination for Plane Localization in 3D Ultrasound.- Learning and Understanding Deep Spatio-Temporal Representations from Free-Hand Fetal Ultrasound Sweeps.- User guidance for point-of-care echocardiography using multi-task deep neural network.- Integrating 3D Geometry of Organ for Improving Medical Imaging Segmentation.- Estimating Reference Bony Shape Model for Personalized Surgical Reconstruction of Posttraumatic Facial Defects.- A New Approach of Predicting Facial Changes following Orthognathic Surgery using Realistic Lip Sliding Effect.- An Automatic Approach to Reestablish Final Dental Occlusion for 1-Piece Maxillary Orthognathic Surgery.- MIC meets CAI.- A Two-stage Framework for Real-time Guidewire Endpoint Localization.- Investigating the role of VR in a simulation-based medical planning system for coronary interventions.- Learned Full-sampling Reconstruction.- A deep regression model for seed localization in prostate brachytherapy.- Model-Based Surgical Recommendations for Optimal Placement of
Автор: Dinggang Shen; Tianming Liu; Terry M. Peters; Lawr Название: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 ISBN: 3030322386 ISBN-13(EAN): 9783030322380 Издательство: Springer Рейтинг: Цена: 14813.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Optical Imaging.- Enhancing OCT Signal by Fusion of GANs: Improving Statistical Power of Glaucoma Trials.- A Deep Reinforcement Learning Framework for Frame-by-frame Plaque Tracking on Intravascular Optical Coherence Tomography Image.- Multi-Index Optic Disc Quantification via MultiTask Ensemble Learning.- Retinal Abnormalities Recognition Using Regional Multitask Learning.- Unifying Structure Analysis and Surrogate-driven Function Regression for Glaucoma OCT Image Screening.- Evaluation of Retinal Image Quality Assessment Networks in Different Color-spaces.- 3D Surface-Based Geometric and Topological Quantification of Retinal Microvasculature in OCT-Angiography via Reeb Analysis.- Limited-Angle Diffuse Optical Tomography Image Reconstruction using Deep Learning.- Data-driven Enhancement of Blurry Retinal Images via Generative Adversarial Networks.- Dual Encoding U-Net for Retinal Vessel Segmentation.- A Deep Learning Design for improving Topology Coherence in Blood Vessel Segmentation.- Boundary and Entropy-driven Adversarial Learning for Fundus Image Segmentation.- Unsupervised Ensemble Strategy for Retinal Vessel Segmentation.- Fully convolutional boundary regression for retina OCT segmentation.- PM-NET: Pyramid Multi-Label Network for Optic Disc and Cup Segmentation.- Biological Age Estimated from Retinal Imaging: A Novel Biomarker of Aging.- Task Adaptive Metric Space for Medium-Shot Medical Image Classification.- Two-Stream CNN with Loose Pair Training for Multi-modal AMD Categorization.- Deep Multi Label Classification in Affine Subspaces.- Multi-scale Microaneurysms Segmentation Using Embedding Triplet Loss.- A Divide-and-Conquer Approach towards Understanding Deep Networks.- Multiclass segmentation as multitask learning for drusen segmentation in retinal optical coherence tomography.- Active Appearance Model Induced Generative Adversarial Networks for Controlled Data Augmentation.- Biomarker Localization by Combining CNN Classifier and Generative Adversarial Network.- Probabilistic Atlases to Enforce Topological Constraints.- Synapse-Aware Skeleton Generation for Neural Circuits.- Seeing Under the Cover: A Physics Guided Learning Approach for In-Bed Pose Estimation.- EDA-Net: Dense Aggregation of Deep and Shallow Information Achieves Quantitative Photoacoustic Blood Oxygenation Imaging Deep in Human Breast.- Fused Detection of Retinal Biomarkers in OCT Volumes.- Vessel-Net: Retinal Vessel Segmentation under Multi-path Supervision.- Ki-GAN: Knowledge Infusion Generative Adversarial Network for Photoacoustic Image Reconstruction in vivo.- Uncertainty guided semisupervised segmentation of retinal layers in OCT images.- Endoscopy.- Triple ANet: Adaptive Abnormal-aware Attention Network for WCE Image Classification.- Selective Feature Aggregation Network with Area-boundary Constraints for Polyp Segmentation.- Deep Sequential Mosaicking of Fetoscopic Videos.- Landmark-guided Deformable Image Registration for Supervised Autonomous Robotic Tumor Resection.- Multi-View Learning with Feature Level Fusion for Cervical Dysplasia Diagnosis.- Real-time Surface Deformation Recovery from Stereo Videos.- Microscopy.- Rectified Cross-Entropy and Upper Transition Loss for Weakly Supervised Whole Slide Image Classifier.- From Whole Slide Imaging to Microscopy: Deep Microscopy Adaptation Network for Histopathology Cancer Image Classification.- Multi-scale Cell Instance Segmentation with Keypoint Graph based Bounding Boxes.- Improving Nuclei/Gland Instance Segmentation in Histopathology Images by Full Resolution Neural Network and Spatial Constrained Loss.- Synthetic Augmentation and Feature-based Filtering for Improved Cervical Histopathology Image Classification.- Cell Tracking with Deep Learning for Cell Detection and Motion Estimation in Low-Frame-Rate.- Accelerated ML-assisted Tumor Detection in High-Resolution Histopathology Images.- Pre-operative Overall Survival Time Prediction for Glioblas
Автор: Alejandro F. Frangi; Julia A. Schnabel; Christos D Название: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 ISBN: 3030009300 ISBN-13(EAN): 9783030009304 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Special LNCS price list
Frontmatter
No extra bibliographic information, no special copyright line, nor logos to be included.
All standards of the selected production classification to be applied.
LNCS format
Precursor Volume: 10433-10435
Order Series: ---
Preface - starts on a right page
Organization pages - start on a right page
TOC - starts on a right page
Please insert the line breaks in the title on p. III as follows:
Medical Image Computing \\
and Computer-Assisted Intervention - \\
MICCAI 2018\\
Please insert the line breaks in the subtitle on p. III as follows:
21st International Conference\\
Granada, Spain, September 16-20, 2018\\
Proceedings, Part II
Copyediting
All standards of the selected CE Level to be applied consistently within the individual chapters (i.e. no extra instructions regarding math mark-up, styling references, citations, etc.).
LNCS Sublibrary: 6/7412
You get the edited preface and the organization pages within one week directly from Isabella.
Proofs
Send proofs to the corresponding originator.
Layout
For projects in production category D: apply a global layout with standard global (series) options. As regards the numbering of headings, please follow the manuscript. Return full-text XML.
Source line chapter opening page:
Fulltext-XML
(c) Springer Nature Switzerland AG 2018\\ A.F. Frangi et al. (Eds.): MICCAI 2018, LNCS 11070/11071/11072/11073, pp. X-XY, 2018\\
DOI: 10.1007/978-3-030-00000-0_z \\
Ads
No internal no external ads to be included anywhere in the book.
Cover design specs
No individual illustration, author details or photo to go on the cover. Apply corporate cover design from http: //bookcovers.springer.com/; for a series volume select the appropriate "Series" template, for a non-series book choose one of the subject specific "Standalone Title" templates.
LNCS cover grey/red
Please insert the conference logo on cover page 1.
Please insert the line breaks in the title on cover page 1as follows:
Medical Image Computing \\ and Computer-Assisted Intervention - \\
MICCAI 2018\\
Please insert the line breaks in the subtitle on cover page 1as follows:
21st International Conference\\
Granada, Spain, September 16-20, 2018\\
Proceedings, Part I/II/III/IV
Manuscript Material
Manuscript files and reference pdf are complete.
Send proofs to the corresponding originator.
Corresponding editor: Julia A. Schnabel (email: Julia.schnabel@kcl.ac.uk)
Complimentary copies
Handling of complimentary copies is organized by publishing.
Index(es)
The manuscript material holds index terms with page numbers; default index type "combined name/subject index" to be applied.
Please prepare a common Author Index for the 4 volumes.
Author index - starts on a right page.
Miscellaneous
Other: no other specific requirements wit
Автор: Kensaku Mori; Ichiro Sakuma; Yoshinobu Sato; Chris Название: Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2013 ISBN: 3642407625 ISBN-13(EAN): 9783642407628 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The three-volume set LNCS 8149, 8150, and 8151 constitutes the refereed proceedings of the 16th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2013, held in Nagoya, Japan, in September 2013.
Автор: Kensaku Mori; Ichiro Sakuma; Yoshinobu Sato; Chris Название: Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2013 ISBN: 3642407595 ISBN-13(EAN): 9783642407598 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The three-volume set LNCS 8149, 8150, and 8151 constitutes the refereed proceedings of the 16th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2013, held in Nagoya, Japan, in September 2013.
Автор: Polina Golland; Nobuhiko Hata; Christian Barillot; Название: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2014 ISBN: 3319104039 ISBN-13(EAN): 9783319104034 Издательство: Springer Рейтинг: Цена: 13416.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The three-volume set LNCS 8673, 8674, and 8675 constitutes the refereed proceedings of the 17th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2014, held in Boston, MA, USA, in September 2014.
Автор: Dimitris Metaxas; Leon Axel; Gabor Fichtinger; Gab Название: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2008 ISBN: 3540859896 ISBN-13(EAN): 9783540859895 Издательство: Springer Рейтинг: Цена: 23757.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Constitutes the refereed proceedings of the 11th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2008, held in New York, NY, USA, in September 2008. This two-volume set includes papers related to medical image computing, segmentation, and contributions related to robotics and interventions.
Автор: Maxime Descoteaux; Lena Maier-Hein; Alfred Franz; Название: Medical Image Computing and Computer Assisted Intervention ? MICCAI 2017 ISBN: 3319661817 ISBN-13(EAN): 9783319661810 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The three-volume set LNCS 10433, 10434, and 10435 constitutes the refereed proceedings of the 20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017, held inQuebec City, Canada, in September 2017. The 255 revised full papers presented were carefully reviewed and selected from 800 submissions in a two-phase review process. The papers have been organized in the following topical sections: Part I: atlas and surface-based techniques; shape and patch-based techniques; registration techniques, functional imaging, connectivity, and brain parcellation; diffusion magnetic resonance imaging (dMRI) and tensor/fiber processing; and image segmentation and modelling. Part II: optical imaging; airway and vessel analysis; motion and cardiac analysis; tumor processing; planning and simulation for medical interventions; interventional imaging and navigation; and medical image computing. Part III: feature extraction and classification techniques; and machine learning in medical image computing.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru