Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Atomicity through Fractal Measure Theory, Alina Gavrilu?; Ioan Merche?; Maricel Agop


Варианты приобретения
Цена: 11179.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Alina Gavrilu?; Ioan Merche?; Maricel Agop
Название:  Atomicity through Fractal Measure Theory
ISBN: 9783030295929
Издательство: Springer
Классификация:


ISBN-10: 3030295923
Обложка/Формат: Hardcover
Страницы: 184
Вес: 0.47 кг.
Дата издания: 2019
Язык: English
Издание: 1st ed. 2019
Иллюстрации: 1 illustrations, black and white; xiii, 184 p. 1 illus.
Размер: 234 x 156 x 13
Читательская аудитория: Professional & vocational
Основная тема: Mathematics
Подзаголовок: Mathematical and Physical Fundamentals with Applications
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book presents an exhaustive study of atomicity from a mathematics perspective in the framework of multi-valued non-additive measure theory. Applications to quantum physics and, more generally, to the fractal theory of the motion, are highlighted. The study details the atomicity problem through key concepts, such as the atom/pseudoatom, atomic/nonatomic measures, and different types of non-additive set-valued multifunctions. Additionally, applications of these concepts are brought to light in the study of the dynamics of complex systems.The first chapter prepares the basics for the next chapters. In the last chapter, applications of atomicity in quantum physics are developed and new concepts, such as the fractal atom are introduced. The mathematical perspective is presented first and the discussion moves on to connect measure theory and quantum physics through quantum measure theory. New avenues of research, such as fractal/multifractal measure theory with potential applications in life sciences, are opened.
Дополнительное описание: Preface.- 1. Short hypertopologies. A short overview.- 2. A Mathematical-physical approach on regularity in hit-and-miss hypertologies for fuzzy set multifunctions.- 3. Non-atomic set multifunctions.- 4. Non-atomicity and the Darboux property for fuzzy an



Fractal-Based Methods in Analysis

Автор: Herb Kunze; Davide La Torre; Franklin Mendivil; Ed
Название: Fractal-Based Methods in Analysis
ISBN: 1489973745 ISBN-13(EAN): 9781489973740
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Fractal-based methods are at the heart of modeling the behavior of phenomena at varying scales. This volume collates techniques for using IFS fractals, including the very latest cutting-edge methods, from more than 20 years of research in this area.

Fractal Geometry, Complex Dimensions and Zeta Functions / Geometry and Spectra of Fractal Strings

Автор: Lapidus Michel L., Frankenhuijsen Machiel van
Название: Fractal Geometry, Complex Dimensions and Zeta Functions / Geometry and Spectra of Fractal Strings
ISBN: 0387332855 ISBN-13(EAN): 9780387332857
Издательство: Springer
Рейтинг:
Цена: 7400.00 р.
Наличие на складе: Поставка под заказ.

Описание: Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary.Key Features: - The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal strings- Complex dimensions of a fractal string, defined as the poles of an associated zeta function, are studied in detail, then used to understand the oscillations intrinsic to the corresponding fractal geometries and frequency spectra- Explicit formulas are extended to apply to the geometric, spectral, and dynamic zeta functions associated with a fractal- Examples of such formulas include Prime Orbit Theorem with error term for self-similar flows, and a tube formula- The method of diophantine approximation is used to study self-similar strings and flows- Analytical and geometric methods are used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functionsThroughout new results are examined. The final chapter gives a new definition of fractality as the presence of nonreal complex dimensions with positive real parts.The significant studies and problems illuminated in this work may be used in a classroom setting at the graduate level. Fractal Geometry, Complex Dimensions and Zeta Functions will appeal to students and researchers in number theory, fractal geometry, dynamical systems, spectral geometry, and mathematical physics.

Fractal Dimension for Fractal Structures

Автор: Manuel Fern?ndez-Mart?nez; Juan Luis Garc?a Guirao
Название: Fractal Dimension for Fractal Structures
ISBN: 3030166449 ISBN-13(EAN): 9783030166441
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides a generalised approach to fractal dimension theory from the standpoint of asymmetric topology by employing the concept of a fractal structure. The fractal dimension is the main invariant of a fractal set, and provides useful information regarding the irregularities it presents when examined at a suitable level of detail. New theoretical models for calculating the fractal dimension of any subset with respect to a fractal structure are posed to generalise both the Hausdorff and box-counting dimensions. Some specific results for self-similar sets are also proved. Unlike classical fractal dimensions, these new models can be used with empirical applications of fractal dimension including non-Euclidean contexts. In addition, the book applies these fractal dimensions to explore long-memory in financial markets. In particular, novel results linking both fractal dimension and the Hurst exponent are provided. As such, the book provides a number of algorithms for properly calculating the self-similarity exponent of a wide range of processes, including (fractional) Brownian motion and L?vy stable processes. The algorithms also make it possible to analyse long-memory in real stocks and international indexes.This book is addressed to those researchers interested in fractal geometry, self-similarity patterns, and computational applications involving fractal dimension and Hurst exponent.

Microcirculation in Fractal Branching Networks

Автор: Takahashi
Название: Microcirculation in Fractal Branching Networks
ISBN: 4431545077 ISBN-13(EAN): 9784431545071
Издательство: Springer
Рейтинг:
Цена: 23058.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents a new method for analyzing the structure and function of the biological branching systems of fractal trees, with a focus on microcirculation. Branching systems in humans (vascular and bronchial trees) and those in the natural world (plants, trees, and rivers) are characterized by a fractal nature.

Measure, Topology, and Fractal Geometry

Автор: Gerald Edgar
Название: Measure, Topology, and Fractal Geometry
ISBN: 1441925694 ISBN-13(EAN): 9781441925695
Издательство: Springer
Рейтинг:
Цена: 5723.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

From reviews of the first edition:

"In the world of mathematics, the 1980's might well be described as the "decade of the fractal." Starting with Benoit Mandelbrot's remarkable text The Fractal Geometry of Nature, there has been a deluge of books, articles and television programmes about the beautiful mathematical objects, drawn by computers using recursive or iterative algorithms, which Mandelbrot christened fractals. Gerald Edgar's book is a significant addition to this deluge. Based on a course given to talented high- school students at Ohio University in 1988, it is, in fact, an advanced undergraduate textbook about the mathematics of fractal geometry, treating such topics as metric spaces, measure theory, dimension theory, and even some algebraic topology...the book also contains many good illustrations of fractals (including 16 color plates)."

Mathematics Teaching

"The book can be recommended to students who seriously want to know about the mathematical foundation of fractals, and to lecturers who want to illustrate a standard course in metric topology by interesting examples."

Christoph Bandt, Mathematical Reviews

..".not only intended to fit mathematics students who wish to learn fractal geometry from its beginning but also students in computer science who are interested in the subject. Especially, for the last students the author gives the required topics from metric topology and measure theory on an elementary level. The book is written in a very clear style and contains a lot of exercises which should be worked out."

H.Haase, Zentralblatt

About the second edition: Changes throughout the text, taking into account developments in the subject matter since 1990; Major changes in chapter 6. Since 1990 it has become clear that there are two notions of dimension that play complementary roles, so the emphasis on Hausdorff dimension will be replaced by the two: Hausdorff dimension and packing dimension. 6.1 will remain, but a new section on packing dimension will follow it, then the old sections 6.2--6.4 will be re-written to show both types of dimension; Substantial change in chapter 7: new examples along with recent developments; Sections rewritten to be made clearer and more focused.

Fractal Geometry and Stochastics V

Автор: Christoph Bandt; Kenneth Falconer; Martina Z?hle
Название: Fractal Geometry and Stochastics V
ISBN: 3319186590 ISBN-13(EAN): 9783319186597
Издательство: Springer
Рейтинг:
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book collects significant contributions from the fifth conference on Fractal Geometry and Stochastics held in Tabarz, Germany, in March 2014. The book is divided into five topical sections: geometric measure theory, self-similar fractals and recurrent structures, analysis and algebra on fractals, multifractal theory, and random constructions.

Fractal Zeta Functions and Fractal Drums

Автор: Michel L. Lapidus; Goran Radunovi?; Darko ?ubrini?
Название: Fractal Zeta Functions and Fractal Drums
ISBN: 3319447041 ISBN-13(EAN): 9783319447049
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This monograph gives a state-of-the-art and accessible treatment of a new general higher-dimensional theory of complex dimensions, valid for arbitrary bounded subsets of Euclidean spaces, as well as for their natural generalization, relative fractal drums.

Horizons of Fractal Geometry and Complex Dimensions

Автор: Robert G. Niemeyer, Erin P.J. Pearse, John A. Rock, Tony Samuel
Название: Horizons of Fractal Geometry and Complex Dimensions
ISBN: 1470435810 ISBN-13(EAN): 9781470435813
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 16302.00 р.
Наличие на складе: Нет в наличии.

Описание: This volume contains the proceedings of the 2016 Summer School on Fractal Geometry and Complex Dimensions, in celebration of Michel L. Lapidus's 60th birthday, held from June 21-29, 2016, at California Polytechnic State University, San Luis Obispo, California. The theme of the contributions is fractals and dynamics and content is split into four parts, centered around the following themes: Dimension gaps and the mass transfer principle, fractal strings and complex dimensions, Laplacians on fractal domains and SDEs with fractal noise, and aperiodic order (Delone sets and tilings).


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия