Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Recommender System for Improving Customer Loyalty, Katarzyna Tarnowska; Zbigniew W. Ras; Lynn Daniel


Варианты приобретения
Цена: 13974.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Katarzyna Tarnowska; Zbigniew W. Ras; Lynn Daniel
Название:  Recommender System for Improving Customer Loyalty
Перевод названия: Катажина Тарновска, Збигнев Рас, Линн Даниэл: Рекомендательная система увеличения лояльности клиенто
ISBN: 9783030134372
Издательство: Springer
Классификация:



ISBN-10: 3030134377
Обложка/Формат: Hardcover
Страницы: 124
Вес: 0.39 кг.
Дата издания: 2020
Серия: Studies in Big Data
Язык: English
Издание: 1st ed. 2020
Иллюстрации: 30 illustrations, color; 10 illustrations, black and white; xviii, 124 p. 40 illus., 30 illus. in color.
Размер: 234 x 156 x 10
Читательская аудитория: Professional & vocational
Основная тема: Engineering
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book presents the Recommender System for Improving Customer Loyalty. New and innovative products have begun appearing from a wide variety of countries, which has increased the need to improve the customer experience. When a customer spends hundreds of thousands of dollars on a piece of equipment, keeping it running efficiently is critical to achieving the desired return on investment. Moreover, managers have discovered that delivering a better customer experience pays off in a number of ways. A study of publicly traded companies conducted by Watermark Consulting found that from 2007 to 2013, companies with a better customer service generated a total return to shareholders that was 26 points higher than the S&P 500. This is only one of many studies that illustrate the measurable value of providing a better service experience.
The Recommender System presented here addresses several important issues. (1) It provides a decision framework to help managers determine which actions are likely to have the greatest impact on the Net Promoter Score. (2) The results are based on multiple clients. The data mining techniques employed in the Recommender System allow users to “learn” from the experiences of others, without sharing proprietary information. This dramatically enhances the power of the system. (3) It supplements traditional text mining options. Text mining can be used to identify the frequency with which topics are mentioned, and the sentiment associated with a given topic. The Recommender System allows users to view specific, anonymous comments associated with actual customers. Studying these comments can provide highly accurate insights into the steps that can be taken to improve the customer experience. (4) Lastly, the system provides a sensitivity analysis feature. In some cases, certain actions can be more easily implemented than others. The Recommender System allows managers to “weigh” these actions and determine which ones would have a greater impact.

Дополнительное описание: Chapter 1: Introduction.- Chapter 2: Customer Loyalty Improvement.- Chapter 3: State of the Art.- Chapter 4: Background.- Chapter 5: Overview of Recommender System Engine.- Chapter 6: Visual Data Analysis.- Chapter 7: Improving Performance of Knowledge Mi



Recommender Systems Handbook

Автор: Francesco Ricci; Lior Rokach; Bracha Shapira
Название: Recommender Systems Handbook
ISBN: 1489977805 ISBN-13(EAN): 9781489977809
Издательство: Springer
Рейтинг:
Цена: 25853.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Recommender Systems: Introduction and Challenges.- A Comprehensive Survey of Neighborhood-based Recommendation Methods.- Advances in Collaborative Filtering.- Semantics-aware Content-based Recommender Systems.- Constraint-based Recommender Systems.- Context-Aware Recommender Systems.- Data Mining Methods for Recommender Systems.- Evaluating Recommender Systems.- Evaluating Recommender Systems with User Experiments.- Explaining Recommendations: Design and Evaluation.- Recommender Systems in Industry: A Netflix Case Study.- Panorama of Recommender Systems to Support Learning.- Music Recommender Systems.- The Anatomy of Mobile Location-Based Recommender Systems.- Social Recommender Systems.- People-to-People Reciprocal Recommenders.- Collaboration, Reputation and Recommender Systems in Social Web Search.- Human Decision Making and Recommender Systems.- Privacy Aspects of Recommender Systems.- Source Factors in Recommender System Credibility Evaluation.- Personality and Recommender Systems.- Group Recommender Systems: Aggregation, Satisfaction and Group Attributes.- Aggregation Functions for Recommender Systems.- Active Learning in Recommender Systems.- Multi-Criteria Recommender Systems.- Novelty and Diversity in Recommender Systems.- Cross-domain Recommender Systems.- Robust Collaborative Recommendation.

Recommender Systems for Technology Enhanced Learning

Автор: Manouselis Nikos
Название: Recommender Systems for Technology Enhanced Learning
ISBN: 1493905295 ISBN-13(EAN): 9781493905294
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Recommender Systems for Technology Enhanced Learning

Recommender Systems and the Social Web

Автор: Fatih Gedikli
Название: Recommender Systems and the Social Web
ISBN: 3658019476 ISBN-13(EAN): 9783658019471
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: ГЇВїВЅ There is an increasing demand for recommender systems due to the information overload users are facing on the Web. A tag recommender algorithm is proposed which recommends tags for users to annotate their favorite online resources.

Matrix and Tensor Factorization Techniques for Recommender Systems

Автор: Panagiotis Symeonidis; Andreas Zioupos
Название: Matrix and Tensor Factorization Techniques for Recommender Systems
ISBN: 3319413562 ISBN-13(EAN): 9783319413563
Издательство: Springer
Рейтинг:
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides a detailed theoretical mathematical background of matrix/tensor factorization techniques and a step-by-step analysis of each method on the basis of an integrated toy example that runs throughout all its chapters and helps the reader to understand the key differences among methods.

Recommender Systems for the Social Web

Автор: Jos? J. Pazos Arias; Ana Fern?ndez Vilas; Rebeca P
Название: Recommender Systems for the Social Web
ISBN: 3642446272 ISBN-13(EAN): 9783642446276
Издательство: Springer
Рейтинг:
Цена: 16977.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book introduces opportunities and challenges that arise in the recommenders` area with the advent of Web 2.0. It presents the mains aspects in the Web 2.0 hype which have to be incorporated in traditional recommender systems.

Mining, Modeling, and Recommending `Things` in Social Media

Автор: Martin Atzmueller; Alvin Chin; Christoph Scholz; C
Название: Mining, Modeling, and Recommending `Things` in Social Media
ISBN: 3319147226 ISBN-13(EAN): 9783319147222
Издательство: Springer
Рейтинг:
Цена: 5590.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the thoroughly refereed joint post-workshop proceedings of the 4th International Workshop on Mining Ubiquitous and Social Environments, MUSE 2013, held in Prague, Czech Republic, in September 2013, and the 4th International Workshop on Modeling Social Media, MSM 2013, held in Paris, France, in May 2013.

Social Web Artifacts for Boosting Recommenders

Автор: Cai-Nicolas Ziegler
Название: Social Web Artifacts for Boosting Recommenders
ISBN: 331900526X ISBN-13(EAN): 9783319005263
Издательство: Springer
Рейтинг:
Цена: 19591.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents approaches for exploiting the rapidly expanding fountain of Social Web knowledge by means of classification taxonomies and trust networks, which are used to improve the performance of product-focused recommender systems.

Recommender Systems for Technology Enhanced Learning

Автор: Nikos Manouselis; Hendrik Drachsler; Katrien Verbe
Название: Recommender Systems for Technology Enhanced Learning
ISBN: 1493946560 ISBN-13(EAN): 9781493946563
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Collaborative Filtering Recommendation of Educational Content in Social Environments utilizing Sentiment Analysis Techniques.- Towards automated evaluation of learning resources inside repositories.- Linked Data and the Social Web as facilitators for TEL recommender systems in research and practice.- The Learning Registry: Applying Social Metadata for Learning Resource Recommendations.- A Framework for Personalised Learning-Plan Recommendations in Game-Based Learning.- An approach for an Affective Educational Recommendation Model.- The Case for Preference-Inconsistent Recommendations.- Further Thoughts on Context-Aware Paper Recommendations for Education.- Towards a Social Trust-aware Recommender for Teachers.- ALEF: from Application to Platform for Adaptive Collaborative Learning.- Two Recommending Strategies to enhance Online Presence in Personal Learning Environments.- Recommendations from Heterogeneous Sources in a Technology Enhanced Learning Ecosystem.- COCOON CORE: CO-Author Recommendations based on Betweenness Centrality and Interest Similarity.- Scientific Recommendations to Enhance Scholarly Awareness and Foster Collaboration.

Trust Networks for Recommender Systems

Автор: Patricia Victor; Chris Cornelis; Martine De Cock
Название: Trust Networks for Recommender Systems
ISBN: 9491216392 ISBN-13(EAN): 9789491216398
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Featuring innovative contributions to the field such as a new bilattice-based model for trust and distrust, this book on a hot research topic is the first in-depth study of the potential of distrust in the emerging domain of trust-enhanced recommendation.

Recommender Systems

Автор: Charu C. Aggarwal
Название: Recommender Systems
ISBN: 3319296574 ISBN-13(EAN): 9783319296579
Издательство: Springer
Рейтинг:
Цена: 9362.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: An Introduction to Recommender Systems.- Neighborhood-Based Collaborative Filtering.- Model-Based Collaborative Filtering.- Content-Based Recommender Systems.- Knowledge-Based Recommender Systems.- Ensemble-Based and Hybrid Recommender Systems.- Evaluating Recommender Systems.- Context-Sensitive Recommender Systems.- Time- and Location-Sensitive Recommender Systems.- Structural Recommendations in Networks.- Social and Trust-Centric Recommender Systems.- Attack-Resistant Recommender Systems.- Advanced Topics in Recommender Systems.

Improving Marketing Strategies for Private Label Products

Автор: Yusuf Arslan
Название: Improving Marketing Strategies for Private Label Products
ISBN: 1799802582 ISBN-13(EAN): 9781799802587
Издательство: Mare Nostrum (Eurospan)
Цена: 22037.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: With changing economic and social environmental conditions and diversified consumer attitudes, national and international competition has increased among retailers. Private label brands have started to follow a dynamic structure in order to adapt themselves to developing environmental conditions. Today, private label products are often mentioned as a mechanism for reaching differentiation in the market and for helping retailers to strengthen consumer loyalty. Improving Marketing Strategies for Private Label Products is a collection of innovative research that examines how some markets are successful and what other markets can do to increase their market share in terms of private label products. It supports in the development of marketing strategies that can help make a private label product more successful. While highlighting topics including e-commerce, national branding, and consumer behavior, this book is ideally designed for marketing professionals, managers, executives, entrepreneurs, business owners, business practitioners, researchers, academicians, and students.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия