Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization, Alfredo Vellido; Karina Gibert; Cecilio Angulo; Jo


Варианты приобретения
Цена: 20962.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Alfredo Vellido; Karina Gibert; Cecilio Angulo; Jo
Название:  Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization
ISBN: 9783030196417
Издательство: Springer
Классификация:

ISBN-10: 3030196410
Обложка/Формат: Soft cover
Страницы: 342
Вес: 0.55 кг.
Дата издания: 2020
Серия: Advances in Intelligent Systems and Computing
Язык: English
Издание: 1st ed. 2020
Иллюстрации: 113 illustrations, color; 48 illustrations, black and white; xii, 342 p. 161 illus., 113 illus. in color.
Размер: 234 x 156 x 19
Читательская аудитория: Professional & vocational
Основная тема: Engineering
Подзаголовок: Proceedings of the 13th International Workshop, WSOM+ 2019, Barcelona, Spain, June 26-28, 2019
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book gathers papers presented at the 13th International Workshop on Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization (WSOM+), which was held in Barcelona, Spain, from the 26th to the 28th of June 2019. Since being founded in 1997, the conference has showcased the state of the art in unsupervised machine learning methods related to the successful and widely used self-organizing map (SOM) method, and extending its scope to clustering and data visualization. In this installment of the AISC series, the reader will find theoretical research on SOM, LVQ and related methods, as well as numerous applications to problems in fields ranging from business and engineering to the life sciences. Given the scope of its coverage, the book will be of interest to machine learning researchers and practitioners in general and, more specifically, to those looking for the latest developments in unsupervised learning and data visualization.


Clustering Methods for Big Data Analytics

Автор: Olfa Nasraoui; Chiheb-Eddine Ben N`Cir
Название: Clustering Methods for Big Data Analytics
ISBN: 3319978632 ISBN-13(EAN): 9783319978635
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation.

Data Analysis in Bi-partial Perspective: Clustering and Beyond

Автор: Jan W. Owsi?ski
Название: Data Analysis in Bi-partial Perspective: Clustering and Beyond
ISBN: 3030133885 ISBN-13(EAN): 9783030133887
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents the bi-partial approach to data analysis, which is both uniquely general and enables the development of techniques for many data analysis problems, including related models and algorithms. It is based on adequate representation of the essential clustering problem: to group together the similar, and to separate the dissimilar. This leads to a general objective function and subsequently to a broad class of concrete implementations. Using this basis, a suboptimising procedure can be developed, together with a variety of implementations.This procedure has a striking affinity with the classical hierarchical merger algorithms, while also incorporating the stopping rule, based on the objective function. The approach resolves the cluster number issue, as the solutions obtained include both the content and the number of clusters. Further, it is demonstrated how the bi-partial principle can be effectively applied to a wide variety of problems in data analysis.The book offers a valuable resource for all data scientists who wish to broaden their perspective on basic approaches and essential problems, and to thus find answers to questions that are often overlooked or have yet to be solved convincingly. It is also intended for graduate students in the computer and data sciences, and will complement their knowledge and skills with fresh insights on problems that are otherwise treated in the standard “academic” manner.

Clustering High--Dimensional Data

Автор: Francesco Masulli; Alfredo Petrosino; Stefano Rove
Название: Clustering High--Dimensional Data
ISBN: 3662485761 ISBN-13(EAN): 9783662485767
Издательство: Springer
Рейтинг:
Цена: 5590.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the proceedings of the International Workshop on Clustering High-Dimensional Data, CHDD 2012, held in Naples, Italy, in May 2012. and the most common approach to tackle dimensionality problems, namely, dimensionality reduction and its application in clustering.

Clustering Methods for Big Data Analytics

Автор: Olfa Nasraoui; Chiheb-Eddine Ben N`Cir
Название: Clustering Methods for Big Data Analytics
ISBN: 3030074196 ISBN-13(EAN): 9783030074197
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation.

Advances in Self-Organizing Maps and Learning Vector Quantization

Автор: Thomas Villmann; Frank-Michael Schleif; Marika Kad
Название: Advances in Self-Organizing Maps and Learning Vector Quantization
ISBN: 3319076949 ISBN-13(EAN): 9783319076942
Издательство: Springer
Рейтинг:
Цена: 26122.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

How Many Dissimilarity/Kernel Self Organizing Map Variants Do We Need.- Dynamic formation of self-organizing maps.- MS-SOM: Magnitude Sensitive Self-Organizing Maps.- Bagged Kernel SOM.- Probability ridges and distortion flows: Visualizing multivariate time series using a variational Bayesian manifold learning method.- Short review of dimensionality reduction methods based on stochastic neighbour embedding.- Attention based Classification Learning in GLVQ and Asymmetric Classification Error Assessment.-Visualization and Classification of DNA sequences using Pareto learning Self Organizing Maps based on Frequency and Correlation Coefficient.- Probabilistic prototype classification using t-norms.- Rejection Strategies for Learning Vector Quantization - a Comparison of Probabilistic and Deterministic Approaches.- Comparison of spectrum cluster analysis with PCA and spherical SOM and related issues not amenable to PCA.- Exploiting the structures of the U-matrix.- Partial Mutual Information for Classification Analysis of Gene expression Data by Learning Vector Quantization.- Composition of Learning Patterns using Spherical Self-Organizing Maps in Image Analysis with Subspace Classifier.- Self-Organizing Map for the Prize-Collecting Traveling Salesman Problem.- A Survey of SOM-based Active Contour Models for Image Segmentation.- Biologically Plausible SOM Representation of the Orthographic Form of 50,000 French Words.- Prototype-based classifiers and their application in the life sciences.- Generative versus discriminative prototype based classification.- Some room for GLVQ: Semantic Labeling of occupancy grid maps.- Anomaly detection based on confidence intervals using SOM with an application to Health Monitoring.- RFSOM - Extending Self-Organizing feature Maps with adaptive metrics to combine spatial and textural features for body pose estimation.- Beyond Standard Metrics - On the Selection and Combination of Distance Metrics for an Improved.- Classification of Hyperspectral Data.- The Sky Is Not the Limit.- Development of Target Reaching Gesture Map in the Cortex and Its Relation to the Motor Map: A Simulation Study.- A Concurrent SOM-based Chan-Vese Model for Image Segmentation.- Text mining of life-philosophicl insights.- SOMbrero: an R Package for Numeric and Non-numeric Self-Organizing Maps.- K-Nearest Neighbor Nonnegative Matrix Factorization for Learning a Mixture of Local SOM Models.

Metaheuristics for Data Clustering and Image Segmentation

Автор: Meera Ramadas; Ajith Abraham
Название: Metaheuristics for Data Clustering and Image Segmentation
ISBN: 3030040968 ISBN-13(EAN): 9783030040963
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In this book, differential evolution and its modified variants are applied to the clustering of data and images. Metaheuristics have emerged as potential algorithms for dealing with complex optimization problems, which are otherwise difficult to solve using traditional methods. In this regard, differential evolution is considered to be a highly promising technique for optimization and is being used to solve various real-time problems. The book studies the algorithms in detail, tests them on a range of test images, and carefully analyzes their performance. Accordingly, it offers a valuable reference guide for all researchers, students and practitioners working in the fields of artificial intelligence, optimization and data analytics.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия