Optimization in Machine Learning and Applications, Anand J. Kulkarni; Suresh Chandra Satapathy
Автор: Christopher M. Bishop Название: Pattern Recognition and Machine Learning ISBN: 0387310738 ISBN-13(EAN): 9780387310732 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Автор: Kevin Murphy Название: Machine Learning ISBN: 0262018020 ISBN-13(EAN): 9780262018029 Издательство: MIT Press Рейтинг: Цена: 18622.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.
Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.
The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package -- PMTK (probabilistic modeling toolkit) -- that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Описание: This text provides a systematic treatment of stochastic optimization problems applied to finance by presenting the different existing methods: dynamic programming, viscosity solutions, backward stochastic differential equations and martingale duality methods.
Автор: Bendsoe M.P., Sigmund O. Название: Topology Optimization: Theory, Methods and Applications ISBN: 3540429921 ISBN-13(EAN): 9783540429920 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The topology optimization method solves the basic engineering problem of distributing a limited amount of material in a design space. The first edition of this book has become the standard text on optimal design, which is concerned with the optimization of structural topology, shape and material. This edition has been substantially revised and updated to reflect progress made in modelling and computational procedures. It also encompasses a comprehensive and unified description of the state of the art of the so-called material distribution method, based on the use of mathematical programming and finite elements. Applications treated include not only structures but also MEMS and materials.
Автор: Bartholomew-Biggs Michael Название: Nonlinear Optimization with Financial Applications ISBN: 1402081103 ISBN-13(EAN): 9781402081101 Издательство: Springer Рейтинг: Цена: 19564.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The book introduces the key ideas behind practical nonlinear optimization. Computational finance – an increasingly popular area of mathematics degree programs – is combined here with the study of an important class of numerical techniques. The financial content of the book is designed to be relevant and interesting to specialists. However, this material – which occupies about one-third of the text – is also sufficiently accessible to allow the book to be used on optimization courses of a more general nature. The essentials of most currently popular algorithms are described, and their performance is demonstrated on a range of optimization problems arising in financial mathematics. Theoretical convergence properties of methods are stated, and formal proofs are provided in enough cases to be instructive rather than overwhelming. Practical behavior of methods is illustrated by computational examples and discussions of efficiency, accuracy and computational costs. Supporting software for the examples and exercises is available (but the text does not require the reader to use or understand these particular codes). The author has been active in optimization for over thirty years in algorithm development and application and in teaching and research supervision.
This book provides the mathematical fundamentals of linear algebra to practicers in computer vision, machine learning, robotics, applied mathematics, and electrical engineering. By only assuming a knowledge of calculus, the authors develop, in a rigorous yet down to earth manner, the mathematical theory behind concepts such as: vectors spaces, bases, linear maps, duality, Hermitian spaces, the spectral theorems, SVD, and the primary decomposition theorem. At all times, pertinent real-world applications are provided. This book includes the mathematical explanations for the tools used which we believe that is adequate for computer scientists, engineers and mathematicians who really want to do serious research and make significant contributions in their respective fields.
Описание: This book provides the mathematical fundamentals of linear algebra to practicers in computer vision, machine learning, robotics, applied mathematics, and electrical engineering. By only assuming a knowledge of calculus, the authors develop, in a rigorous yet down to earth manner, the mathematical theory behind concepts such as: vectors spaces, bases, linear maps, duality, Hermitian spaces, the spectral theorems, SVD, and the primary decomposition theorem. At all times, pertinent real-world applications are provided. This book includes the mathematical explanations for the tools used which we believe that is adequate for computer scientists, engineers and mathematicians who really want to do serious research and make significant contributions in their respective fields.
Описание: This monograph builds on Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions by discussing tensor network models for super-compressed higher-order representation of data/parameters and cost functions, together with an outline of their applications in machine learning and data analytics. A particular emphasis is on elucidating, through graphical illustrations, that by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volume of data/parameters, thereby alleviating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification, generalized eigenvalue decomposition and in the optimization of deep neural networks. The monograph focuses on tensor train (TT) and Hierarchical Tucker (HT) decompositions and their extensions, and on demonstrating the ability of tensor networks to provide scalable solutions for a variety of otherwise intractable large-scale optimization problems. Tensor Networks for Dimensionality Reduction and Large-scale Optimization Parts 1 and 2 can be used as stand-alone texts, or together as a comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions. See also: Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions. ISBN 978-1-68083-222-8
Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.
Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.
Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.
It contains
Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.
Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
Includes open-access online courses that introduce practical applications of the material in the book
Описание: Volume 2 applies the linear algebra concepts presented in Volume 1 to optimization problems which frequently occur throughout machine learning. This book blends theory with practice by not only carefully discussing the mathematical under pinnings of each optimization technique but by applying these techniques to linear programming, support vector machines (SVM), principal component analysis (PCA), and ridge regression. Volume 2 begins by discussing preliminary concepts of optimization theory such as metric spaces, derivatives, and the Lagrange multiplier technique for finding extrema of real valued functions. The focus then shifts to the special case of optimizing a linear function over a region determined by affine constraints, namely linear programming. Highlights include careful derivations and applications of the simplex algorithm, the dual-simplex algorithm, and the primal-dual algorithm. The theoretical heart of this book is the mathematically rigorous presentation of various nonlinear optimization methods, including but not limited to gradient decent, the Karush-Kuhn-Tucker (KKT) conditions, Lagrangian duality, alternating direction method of multipliers (ADMM), and the kernel method. These methods are carefully applied to hard margin SVM, soft margin SVM, kernel PCA, ridge regression, lasso regression, and elastic-net regression. Matlab programs implementing these methods are included.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru