Описание: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples. Exercises and student projects are available on the book’s webpage, along with Matlab mfiles for implementing methods. Readers will gain an understanding of the essential ideas that underlie the development, analysis, and practical use of finite difference methods as well as the key concepts of stability theory, their relation to one another, and their practical implications. The author provides a foundation from which students can approach more advanced topics.
Описание: The book is suitable for readers with a background in basic finite element and finite difference methods for partial differential equations who wants gentle introductions to advanced topics like parallel computing, multigrid methods, and special methods for systems of PDEs. The goal of all chapters is to *compute* solutions to problems, hence algorithmic and software issues play a central role. All software examples use the Diffpack programming environment, so to take advantage of these examples some experience with Diffpack is required. There are also some chapters covering complete applications, i.e., the way from a model, expressed as systems of PDEs, through discretization methods, algorithms, software design, verification, and computational examples.
Описание: This graduate textbook - now in its second edition - teaches finite element methods and basic finite difference methods from a computational point of view. The emphasis is on developing flexible computer programs using the numerical library Diffpack. Diffpack is explained in detail for problems including model equations in applied mathematics, heat transfer, elasticity, and viscous fluid flow. All the program examples, as well as Diffpack for use with this book, are available on the Internet.
Автор: Renardy Michael, Rogers Robert C. Название: An Introduction to Partial Differential Equations ISBN: 0387004440 ISBN-13(EAN): 9780387004440 Издательство: Springer Рейтинг: Цена: 10335.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Partial differential equations are fundamental to the modeling of natural phenomena. Like algebra, topology, and rational mechanics, partial differential equations are a core area of mathematics. This book aims to provide the background to initiate work on a PhD thesis in PDEs for beginning graduate students.
Автор: Ahmad Shair Название: Textbook on Ordinary Differential Equations ISBN: 3319164074 ISBN-13(EAN): 9783319164076 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The second edition has been revised to correct minor errata, and features a number of carefully selected new exercises, together with more detailed explanations of some of the topics. A complete Solutions Manual, containing solutions to all the exercises published in the book, is available.
Автор: Marcelo R. Ebert; Michael Reissig Название: Methods for Partial Differential Equations ISBN: 3319664557 ISBN-13(EAN): 9783319664552 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book provides an overview of different topics related to the theory of partial differential equations. Selected exercises are included at the end of each chapter to prepare readers for the “research project for beginners” proposed at the end of the book. It is a valuable resource for advanced graduates and undergraduate students who are interested in specializing in this area.The book is organized in five parts:In Part 1 the authors review the basics and the mathematical prerequisites, presenting two of the most fundamental results in the theory of partial differential equations: the Cauchy-Kovalevskaja theorem and Holmgren's uniqueness theorem in its classical and abstract form. It also introduces the method of characteristics in detail and applies this method to the study of Burger's equation.Part 2 focuses on qualitative properties of solutions to basic partial differential equations, explaining the usual properties of solutions to elliptic, parabolic and hyperbolic equations for the archetypes Laplace equation, heat equation and wave equation as well as the different features of each theory. It also discusses the notion of energy of solutions, a highly effective tool for the treatment of non-stationary or evolution models and shows how to define energies for different models.Part 3 demonstrates how phase space analysis and interpolation techniques are used to prove decay estimates for solutions on and away from the conjugate line. It also examines how terms of lower order (mass or dissipation) or additional regularity of the data may influence expected results.Part 4 addresses semilinear models with power type non-linearity of source and absorbing type in order to determine critical exponents: two well-known critical exponents, the Fujita exponent and the Strauss exponent come into play. Depending on concrete models these critical exponents divide the range of admissible powers in classes which make it possible to prove quite different qualitative properties of solutions, for example, the stability of the zero solution or blow-up behavior of local (in time) solutions. The last part features selected research projects and general background material.
Автор: Dret, Herve Le Название: Nonlinear elliptic partial differential equations ISBN: 3319783890 ISBN-13(EAN): 9783319783895 Издательство: Springer Рейтинг: Цена: 9083.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This textbook presents the essential parts of the modern theory of nonlinear partial differential equations, including the calculus of variations.After a short review of results in real and functional analysis, the author introduces the main mathematical techniques for solving both semilinear and quasilinear elliptic PDEs, and the associated boundary value problems. Key topics include infinite dimensional fixed point methods, the Galerkin method, the maximum principle, elliptic regularity, and the calculus of variations. Aimed at graduate students and researchers, this textbook contains numerous examples and exercises and provides several comments and suggestions for further study.
A brand new, fully updated edition of a popular classic on matrix differential calculus with applications in statistics and econometrics
This exhaustive, self-contained book on matrix theory and matrix differential calculus provides a treatment of matrix calculus based on differentials and shows how easy it is to use this theory once you have mastered the technique. Jan Magnus, who, along with the late Heinz Neudecker, pioneered the theory, develops it further in this new edition and provides many examples along the way to support it.
Matrix calculus has become an essential tool for quantitative methods in a large number of applications, ranging from social and behavioral sciences to econometrics. It is still relevant and used today in a wide range of subjects such as the biosciences and psychology. Matrix Differential Calculus with Applications in Statistics and Econometrics, Third Edition contains all of the essentials of multivariable calculus with an emphasis on the use of differentials. It starts by presenting a concise, yet thorough overview of matrix algebra, then goes on to develop the theory of differentials. The rest of the text combines the theory and application of matrix differential calculus, providing the practitioner and researcher with both a quick review and a detailed reference.
Fulfills the need for an updated and unified treatment of matrix differential calculus
Contains many new examples and exercises based on questions asked of the author over the years
Covers new developments in field and features new applications
Written by a leading expert and pioneer of the theory
Part of the Wiley Series in Probability and Statistics
Matrix Differential Calculus With Applications in Statistics and Econometrics Third Edition is an ideal text for graduate students and academics studying the subject, as well as for postgraduates and specialists working in biosciences and psychology.
Автор: Wazwaz Abdul-Majid Название: First Course In Integral Equations, A (Second Edition) ISBN: 9814675121 ISBN-13(EAN): 9789814675123 Издательство: World Scientific Publishing Рейтинг: Цена: 6336.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This second edition integrates the newly developed methods with classical techniques to give both modern and powerful approaches for solving integral equations.
Описание: Suitable for students in the fields of mathematics, science, and engineering, this title provides a theoretical approach to dynamical systems and chaos. It helps them to analyze the types of differential equations that arise in their area of study.
Автор: Schоnlieb Название: Partial Differential Equation Methods for Image Inpainting ISBN: 1107001005 ISBN-13(EAN): 9781107001008 Издательство: Cambridge Academ Рейтинг: Цена: 12195.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is concerned with digital image processing techniques that use partial differential equations (PDEs) for the task of image 'inpainting', an artistic term for virtual image restoration or interpolation, whereby missing or occluded parts in images are completed based on information provided by intact parts. Computer graphic designers, artists and photographers have long used manual inpainting to restore damaged paintings or manipulate photographs. Today, mathematicians apply powerful methods based on PDEs to automate this task. This book introduces the mathematical concept of PDEs for virtual image restoration. It gives the full picture, from the first modelling steps originating in Gestalt theory and arts restoration to the analysis of resulting PDE models, numerical realisation and real-world application. This broad approach also gives insight into functional analysis, variational calculus, optimisation and numerical analysis and will appeal to researchers and graduate students in mathematics with an interest in image processing and mathematical analysis.
Автор: Nikos I. Kavallaris; Takashi Suzuki Название: Non-Local Partial Differential Equations for Engineering and Biology ISBN: 3319679422 ISBN-13(EAN): 9783319679426 Издательство: Springer Рейтинг: Цена: 16070.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents new developments in non-local mathematical modeling and mathematical analysis on the behavior of solutions with novel technical tools.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru