Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Periodic Differential Equations in the Plane: A Topological Perspective, Rafael Ortega


Варианты приобретения
Цена: 18586.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до:
Ориентировочная дата поставки:
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Rafael Ortega
Название:  Periodic Differential Equations in the Plane: A Topological Perspective
ISBN: 9783110550405
Издательство: Walter de Gruyter
Классификация:



ISBN-10: 3110550407
Обложка/Формат: Hardcover
Страницы: 195
Вес: 0.46 кг.
Дата издания: 06.05.2019
Серия: Mathematics
Язык: English
Размер: 244 x 170 x 13
Читательская аудитория: Professional and scholarly
Ключевые слова: Differential calculus & equations,Analytic topology,Geometry, MATHEMATICS / Geometry / General,MATHEMATICS / Differential Equations / General,MATHEMATICS / Topology
Поставляется из: Германии
Описание: Periodic differential equations appear in many contexts such as in the theory of nonlinear oscillators, in celestial mechanics, or in population dynamics with seasonal effects. The most traditional approach to study these equations is based on the introduction of small parameters, but the search of nonlocal results leads to the application of several topological tools. Examples are fixed point theorems, degree theory, or bifurcation theory. These well-known methods are valid for equations of arbitrary dimension and they are mainly employed to prove the existence of periodic solutions. Following the approach initiated by Massera, this book presents some more delicate techniques whose validity is restricted to two dimensions. These typically produce additional dynamical information such as the instability of periodic solutions, the convergence of all solutions to periodic solutions, or connections between the number of harmonic and subharmonic solutions. The qualitative study of periodic planar equations leads naturally to a class of discrete dynamical systems generated by homeomorphisms or embeddings of the plane. To study these maps, Brouwer introduced the notion of a translation arc, somehow mimicking the notion of an orbit in continuous dynamical systems. The study of the properties of these translation arcs is full of intuition and often leads to non-rigorous proofs. In the book, complete proofs following ideas developed by Brown are presented and the final conclusion is the Arc Translation Lemma, a counterpart of the Poincare–Bendixson theorem for discrete dynamical systems. Applications to differential equations and discussions on the topology of the plane are the two themes that alternate throughout the five chapters of the book.


Textbook on Ordinary Differential Equations

Автор: Ahmad Shair
Название: Textbook on Ordinary Differential Equations
ISBN: 3319164074 ISBN-13(EAN): 9783319164076
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The second edition has been revised to correct minor errata, and features a number of carefully selected new exercises, together with more detailed explanations of some of the topics. A complete Solutions Manual, containing solutions to all the exercises published in the book, is available.

Differential Equations, Dynamical Systems, and an Introduction to Chaos

Автор: Morris W. Hirsch
Название: Differential Equations, Dynamical Systems, and an Introduction to Chaos
ISBN: 0123820103 ISBN-13(EAN): 9780123820105
Издательство: Elsevier Science
Рейтинг:
Цена: 13304.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Suitable for students in the fields of mathematics, science, and engineering, this title provides a theoretical approach to dynamical systems and chaos. It helps them to analyze the types of differential equations that arise in their area of study.

Topological Optimization and Optimal Transport: In the Applied Sciences

Автор: Maitine Bergounioux, ?douard Oudet, Martin Rumpf,
Название: Topological Optimization and Optimal Transport: In the Applied Sciences
ISBN: 3110439263 ISBN-13(EAN): 9783110439267
Издательство: Walter de Gruyter
Рейтинг:
Цена: 26024.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

By discussing topics such as shape representations, relaxation theory and optimal transport, trends and synergies of mathematical tools required for optimization of geometry and topology of shapes are explored. Furthermore, applications in science and engineering, including economics, social sciences, biology, physics and image processing are covered.

Contents
Part I

  • Geometric issues in PDE problems related to the infinity Laplace operator
  • Solution of free boundary problems in the presence of geometric uncertainties
  • Distributed and boundary control problems for the semidiscrete Cahn-Hilliard/Navier-Stokes system with nonsmooth Ginzburg-Landau energies
  • High-order topological expansions for Helmholtz problems in 2D
  • On a new phase field model for the approximation of interfacial energies of multiphase systems
  • Optimization of eigenvalues and eigenmodes by using the adjoint method
  • Discrete varifolds and surface approximation

Part II

  • Weak Monge-Ampere solutions of the semi-discrete optimal transportation problem
  • Optimal transportation theory with repulsive costs
  • Wardrop equilibria: long-term variant, degenerate anisotropic PDEs and numerical approximations
  • On the Lagrangian branched transport model and the equivalence with its Eulerian formulation
  • On some nonlinear evolution systems which are perturbations of Wasserstein gradient flows
  • Pressureless Euler equations with maximal density constraint: a time-splitting scheme
  • Convergence of a fully discrete variational scheme for a thin-film equatio
  • Interpretation of finite volume discretization schemes for the Fokker-Planck equation as gradient flows for the discrete Wasserstein distance
Topological Dynamical Systems: An Introduction to the Dynamics of Continuous Mappings

Автор: Jan Vries
Название: Topological Dynamical Systems: An Introduction to the Dynamics of Continuous Mappings
ISBN: 3110340739 ISBN-13(EAN): 9783110340730
Издательство: Walter de Gruyter
Цена: 22305.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: There is no recent elementary introduction to the theory of discrete dynamical systems that stresses the topological background of the topic. This book fills this gap: it deals with this theory as 'applied general topology'. We treat all important concepts needed to understand recent literature. The book is addressed primarily to graduate students. The prerequisites for understanding this book are modest: a certain mathematical maturity and course in General Topology are sufficient.

Topological Methods in Differential Equations and Inclusions

Автор: Gert Sabidussi; Andrzej Granas; Marl?ne Frigon
Название: Topological Methods in Differential Equations and Inclusions
ISBN: 079233678X ISBN-13(EAN): 9780792336785
Издательство: Springer
Рейтинг:
Цена: 46399.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The topics covered in this text, which contains the proceedings of a NATO ASI conference held in Montreal, include: non-smooth critical point theory; second order differential equations on manifolds and forced oscillations; and a topological approach to differential inclusions.

Basic Topological Structures of Ordinary Differential Equations

Автор: V.V. Filippov
Название: Basic Topological Structures of Ordinary Differential Equations
ISBN: 0792349512 ISBN-13(EAN): 9780792349518
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In what concerns equations with discontinuities and differential inclu- sions, we do not restrict the consideration to the Cauchy problem, but we show how to develop an advanced theory whose volume is commensurable with the volume of the existing theory of Ordinary Differential Equations.

Topological Methods for Ordinary Differential Equations

Автор: Massimo Furi; Patrick Fitzpatrick; Pietro Zecca; M
Название: Topological Methods for Ordinary Differential Equations
ISBN: 3540564616 ISBN-13(EAN): 9783540564614
Издательство: Springer
Рейтинг:
Цена: 6288.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume seeks to present the current knowledge of topological methods in the theory of ordinary differential equations and to provide a forum for discussion of the wide variety of mathematical tools which are involved.

Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics

Автор: Seshadev Padhi; John R. Graef; P. D. N. Srinivasu
Название: Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics
ISBN: 8132218949 ISBN-13(EAN): 9788132218944
Издательство: Springer
Рейтинг:
Цена: 12577.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics

Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics

Автор: Seshadev Padhi; John R. Graef; P. D. N. Srinivasu
Название: Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics
ISBN: 8132235428 ISBN-13(EAN): 9788132235422
Издательство: Springer
Рейтинг:
Цена: 13275.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Chapter 1. Introduction.- Chapter 2. Positive Periodic Solutions of Nonlinear Functional Differential Equations with Parameter λ.- Chapter 3. Multiple Periodic Solutions of a System of Functional Differential Equations.- Chapter 4. Multiple Periodic Solutions of Nonlinear Functional Differential Equations.- Chapter 5. Asymptotic Behavior of Periodic Solutions of Differential Equations of First Order.- Bibliography.

Partial differential equations: time-periodic solutions

Автор: Otto Vejvoda; L. Herrmann; V. Lovicar; M. Sova; I.
Название: Partial differential equations: time-periodic solutions
ISBN: 9024727723 ISBN-13(EAN): 9789024727728
Издательство: Springer
Рейтинг:
Цена: 34799.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations

Автор: Marko Kostic
Название: Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations
ISBN: 3110641240 ISBN-13(EAN): 9783110641240
Издательство: Walter de Gruyter
Цена: 21004.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book discusses almost periodic and almost automorphic solutions to abstract integro-differential Volterra equations that are degenerate in time, and in particular equations whose solutions are governed by (degenerate) solution operator families with removable singularities at zero. It particularly covers abstract fractional equations and inclusions with multivalued linear operators as well as abstract fractional semilinear Cauchy problems.

Quasi-periodic Standing Wave Solutions of Gravity-Capillary Water Waves

Автор: Massimiliano Berti, Riccardo Montalto
Название: Quasi-periodic Standing Wave Solutions of Gravity-Capillary Water Waves
ISBN: 1470440695 ISBN-13(EAN): 9781470440695
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 10659.00 р.
Наличие на складе: Нет в наличии.

Описание: The authors prove the existence and the linear stability of small amplitude time quasi-periodic standing wave solutions (i.e. periodic and even in the space variable $x$) of a 2-dimensional ocean with infinite depth under the action of gravity and surface tension. Such an existence result is obtained for all the values of the surface tension belonging to a Borel set of asymptotically full Lebesgue measure.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия