Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Deep Learning Techniques and Optimization Strategies in Big Data Analytics, J. Joshua Thomas, Pinar Karagoz, B. Bazeer Ahamed, Pandian Vasant


Варианты приобретения
Цена: 27027.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-09-01
Ориентировочная дата поставки: начало Октября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: J. Joshua Thomas, Pinar Karagoz, B. Bazeer Ahamed, Pandian Vasant
Название:  Deep Learning Techniques and Optimization Strategies in Big Data Analytics
ISBN: 9781799811930
Издательство: Mare Nostrum (Eurospan)
Классификация:


ISBN-10: 179981193X
Обложка/Формат: Paperback
Страницы: 380
Вес: 0.90 кг.
Дата издания: 30.11.2019
Серия: Computing & IT
Язык: English
Размер: 280 x 216 x 20
Читательская аудитория: Professional and scholarly
Ключевые слова: Artificial intelligence,Machine learning,Information technology: general issues, COMPUTERS / Machine Theory,COMPUTERS / Intelligence (AI) & Semantics,COMPUTERS / Data Processing
Рейтинг:
Поставляется из: Англии
Описание: Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there's a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.


Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.

Автор: Witten, Ian H.
Название: Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.
ISBN: 0128042915 ISBN-13(EAN): 9780128042915
Издательство: Elsevier Science
Рейтинг:
Цена: 9262.00 р.
Наличие на складе: Нет в наличии.

Описание:

Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.

Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.

Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.

It contains

  • Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
  • Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
  • Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.

  • Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
  • Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
  • Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
  • Includes open-access online courses that introduce practical applications of the material in the book
Deep Learning Techniques and Optimization Strategies in Big Data Analytics

Автор: J. Joshua Thomas, Pinar Karagoz, B. Bazeer Ahamed,
Название: Deep Learning Techniques and Optimization Strategies in Big Data Analytics
ISBN: 1799811921 ISBN-13(EAN): 9781799811923
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 35897.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there's a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.

Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)

Автор: Natalio Krasnogor; Bel?n Meli?n-Batista; Jos? A. M
Название: Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)
ISBN: 3642032109 ISBN-13(EAN): 9783642032103
Издательство: Springer
Рейтинг:
Цена: 30606.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: As in these two previous editions, the aim of NICSO 2008, held in Tenerife, Spain, was to provide a forum where the latest ideas and state- of-the-art research related to nature inspired cooperative strategies for problem solving were discussed.

Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies

Автор: Kelleher John D., Macnamee Brian, D`Arcy Aoife
Название: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies
ISBN: 0262029448 ISBN-13(EAN): 9780262029445
Издательство: MIT Press
Рейтинг:
Цена: 13543.00 р.
Наличие на складе: Нет в наличии.

Описание:

A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.

Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context.

After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals.

Intelligent and Fuzzy Techniques in Big Data Analytics and Decision Making

Автор: Cengiz Kahraman; Selcuk Cebi; Sezi Cevik Onar; Bas
Название: Intelligent and Fuzzy Techniques in Big Data Analytics and Decision Making
ISBN: 3030237559 ISBN-13(EAN): 9783030237554
Издательство: Springer
Рейтинг:
Цена: 27950.00 р.
Наличие на складе: Нет в наличии.

Описание: This book includes the proceedings of the Intelligent and Fuzzy Techniques INFUS 2019 Conference, held in Istanbul, Turkey, on July 23–25, 2019. Big data analytics refers to the strategy of analyzing large volumes of data, or big data, gathered from a wide variety of sources, including social networks, videos, digital images, sensors, and sales transaction records. Big data analytics allows data scientists and various other users to evaluate large volumes of transaction data and other data sources that traditional business systems would be unable to tackle. Data-driven and knowledge-driven approaches and techniques have been widely used in intelligent decision-making, and they are increasingly attracting attention due to their importance and effectiveness in addressing uncertainty and incompleteness. INFUS 2019 focused on intelligent and fuzzy systems with applications in big data analytics and decision-making, providing an international forum that brought together those actively involved in areas of interest to data science and knowledge engineering. These proceeding feature about 150 peer-reviewed papers from countries such as China, Iran, Turkey, Malaysia, India, USA, Spain, France, Poland, Mexico, Bulgaria, Algeria, Pakistan, Australia, Lebanon, and Czech Republic.

Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)

Автор: Natalio Krasnogor; Bel?n Meli?n-Batista; Jos? A. M
Название: Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)
ISBN: 3642260349 ISBN-13(EAN): 9783642260346
Издательство: Springer
Рейтинг:
Цена: 30606.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: As in these two previous editions, the aim of NICSO 2008, held in Tenerife, Spain, was to provide a forum where the latest ideas and state- of-the-art research related to nature inspired cooperative strategies for problem solving were discussed.

Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems

Автор: Willem-Jan van Hoeve; Elvin Coban
Название: Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems
ISBN: 3642019285 ISBN-13(EAN): 9783642019289
Издательство: Springer
Рейтинг:
Цена: 9781.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Constitutes the refereed proceedings of the 6th International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, CPAIOR 2009, held in Pittsburgh, PA, USA, in May 2009.

Analog Circuits and Systems Optimization based on Evolutionary Computation Techniques

Автор: Manuel Barros; Jorge Guilherme; Nuno Horta
Название: Analog Circuits and Systems Optimization based on Evolutionary Computation Techniques
ISBN: 3642123457 ISBN-13(EAN): 9783642123450
Издательство: Springer
Рейтинг:
Цена: 23757.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Transistor-level design for complex mixed-signal systems-on-chip remains difficult to automate. This book shows how a modified genetic algorithm kernel can improve efficiency in the analog IC design cycle and includes a worked example of the method.

Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems

Автор: Andrea Lodi; Michela Milano; Paolo Toth
Название: Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems
ISBN: 3642135196 ISBN-13(EAN): 9783642135194
Издательство: Springer
Рейтинг:
Цена: 10480.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Constitutes the refereed proceedings of the 7th International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, CPAIOR 2010, held in Bologna, Italy, in June 2010.

Nature Inspired Cooperative Strategies for Optimization (NICSO 2010)

Автор: Carlos Cruz; Juan R. Gonz?lez; Natalio Krasnogor;
Название: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010)
ISBN: 3642125379 ISBN-13(EAN): 9783642125379
Издательство: Springer
Рейтинг:
Цена: 30606.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Cover topics including nature-inspired techniques like Genetic Algorithms, Evolutionary Algorithms, Ant and Bee Colonies, Swarm Intelligence approaches, Neural Networks, several Cooperation Models, Structures and Strategies, Agents Models, Social Interactions, as well as fresh algorithms based on the behaviour of fireflies or bats.

Mechanical Design Optimization Using Advanced Optimization Techniques

Автор: R. Venkata Rao; Vimal J. Savsani
Название: Mechanical Design Optimization Using Advanced Optimization Techniques
ISBN: 1447159780 ISBN-13(EAN): 9781447159780
Издательство: Springer
Рейтинг:
Цена: 19589.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents a comprehensive review of the latest research and development trends for design optimization of mechanical elements and devices. The authors demonstrate optimization approaches using examples of various mechanical elements and devices.

Nature Inspired Cooperative Strategies for Optimization (NICSO 2011)

Автор: David Alejandro Pelta; Natalio Krasnogor; Dan Dumi
Название: Nature Inspired Cooperative Strategies for Optimization (NICSO 2011)
ISBN: 3642269915 ISBN-13(EAN): 9783642269912
Издательство: Springer
Рейтинг:
Цена: 23508.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents the latest ideas and techniques in nature inspired cooperative strategies, covering swarm intelligence; genetic algorithms; coevolution and cooperation; evolutionary design; hybrid algorithms and membrane computing (P-Systems) and more.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия