Описание: Covers a range of topics in the field with perspectives, models, and first-hand experiences shared by researchers, discussing applications of artificial neural networks and machine learning for biomedical and business applications and a listing of current open-source software for neural networks, machine learning, and artificial intelligence.
Описание: Multi-armed bandit problems pertain to optimal sequential decision making and learning in unknown environments. Since the first bandit problem posed by Thompson in 1933 for the application of clinical trials, bandit problems have enjoyed lasting attention from multiple research communities and have found a wide range of applications across diverse domains. This book covers classic results and recent development on both Bayesian and frequentist bandit problems. We start in Chapter 1 with a brief overview on the history of bandit problems, contrasting the two schools—Bayesian and frequentis —of approaches and highlighting foundational results and key applications. Chapters 2 and 4 cover, respectively, the canonical Bayesian and frequentist bandit models. In Chapters 3 and 5, we discuss major variants of the canonical bandit models that lead to new directions, bring in new techniques, and broaden the applications of this classical problem. In Chapter 6, we present several representative application examples in communication networks and social-economic systems, aiming to illuminate the connections between the Bayesian and the frequentist formulations of bandit problems and how structural results pertaining to one may be leveraged to obtain solutions under the other.
Communication and network technology has witnessed recent rapid development and numerous information services and applications have been developed globally. These technologies have high impact on society and the way people are leading their lives. The advancement in technology has undoubtedly improved the quality of service and user experience yet a lot needs to be still done. Some areas that still need improvement include seamless wide-area coverage, high-capacity hot-spots, low-power massive-connections, low-latency and high-reliability and so on. Thus, it is highly desirable to develop smart technologies for communication to improve the overall services and management of wireless communication. Machine learning and cognitive computing have converged to give some groundbreaking solutions for smart machines. With these two technologies coming together, the machines can acquire the ability to reason similar to the human brain. The research area of machine learning and cognitive computing cover many fields like psychology, biology, signal processing, physics, information theory, mathematics, and statistics that can be used effectively for topology management. Therefore, the utilization of machine learning techniques like data analytics and cognitive power will lead to better performance of communication and wireless systems.
Описание: This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students, and practitioners a unique update on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the X International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2021). The carefully selected papers cover a wide range of theoretical topics such as network models and measures; community structure, network dynamics; diffusion, epidemics and spreading processes; resilience and control as well as all the main network applications, including social and political networks; networks in finance and economics; biological and neuroscience networks, and technological networks.
Описание: Artificial neural network research is one of the new directions for new generation computers. Current research suggests that open box artificial higher order neural networks (HONNs) play an important role in this new direction. HONNs will challenge traditional artificial neural network products and change the research methodology that people are currently using in control and recognition areas for the control signal generating, pattern recognition, nonlinear recognition, classification, and prediction. Since HONNs are open box models, they can be easily accepted and used by individuals working in information science, information technology, management, economics, and business fields.
Emerging Capabilities and Applications of Artificial Higher Order Neural Networks contains innovative research on how to use HONNs in control and recognition areas and explains why HONNs can approximate any nonlinear data to any degree of accuracy, their ease of use, and how they can have better nonlinear data recognition accuracy than SAS nonlinear procedures. Featuring coverage on a broad range of topics such as nonlinear regression, pattern recognition, and data prediction, this book is ideally designed for data analysists, IT specialists, engineers, researchers, academics, students, and professionals working in the fields of economics, business, modeling, simulation, control, recognition, computer science, and engineering research.
Автор: Luca Maria Aiello; Chantal Cherifi; Hocine Cherifi Название: Complex Networks and Their Applications VII ISBN: 3030054101 ISBN-13(EAN): 9783030054106 Издательство: Springer Рейтинг: Цена: 30745.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students and practitioners a unique update on the latest advances in theory, together with a wealth of applications. It presents the peer-reviewed proceedings of the VII International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2018), which was held in Cambridge on December 11–13, 2018. The carefully selected papers cover a wide range of theoretical topics such as network models and measures; community structure and network dynamics; diffusion, epidemics and spreading processes; and resilience and control; as well as all the main network applications, including social and political networks; networks in finance and economics; biological and neuroscience networks; and technological networks.
Описание: This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students, and practitioners a unique update on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the X International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2021). The carefully selected papers cover a wide range of theoretical topics such as network models and measures; community structure, network dynamics; diffusion, epidemics and spreading processes; resilience and control as well as all the main network applications, including social and political networks; networks in finance and economics; biological and neuroscience networks, and technological networks.
Get a head start in the world of AI and deep learning by developing your skills with PyTorch
Key Features
Learn how to define your own network architecture in deep learning
Implement helpful methods to create and train a model using PyTorch syntax
Discover how intelligent applications using features like image recognition and speech recognition really process your data
Book Description
Want to get to grips with one of the most popular machine learning libraries for deep learning? The Deep Learning with PyTorch Workshop will help you do just that, jumpstarting your knowledge of using PyTorch for deep learning even if you're starting from scratch.
It's no surprise that deep learning's popularity has risen steeply in the past few years, thanks to intelligent applications such as self-driving vehicles, chatbots, and voice-activated assistants that are making our lives easier. This book will take you inside the world of deep learning, where you'll use PyTorch to understand the complexity of neural network architectures.
The Deep Learning with PyTorch Workshop starts with an introduction to deep learning and its applications. You'll explore the syntax of PyTorch and learn how to define a network architecture and train a model. Next, you'll learn about three main neural network architectures - convolutional, artificial, and recurrent - and even solve real-world data problems using these networks. Later chapters will show you how to create a style transfer model to develop a new image from two images, before finally taking you through how RNNs store memory to solve key data issues.
By the end of this book, you'll have mastered the essential concepts, tools, and libraries of PyTorch to develop your own deep neural networks and intelligent apps.
What you will learn
Explore the different applications of deep learning
Understand the PyTorch approach to building neural networks
Create and train your very own perceptron using PyTorch
Solve regression problems using artificial neural networks (ANNs)
Handle computer vision problems with convolutional neural networks (CNNs)
Perform language translation tasks using recurrent neural networks (RNNs)
Who this book is for
This deep learning book is ideal for anyone who wants to create and train deep learning models using PyTorch. A solid understanding of the Python programming language and its packages will help you grasp the topics covered in the book more quickly.
Автор: Karthikrajan Senthilnathan, Balamurugan Shanmugam, Dinesh Goyal, Iyswarya Annapoorani, Ravi Samikannu Название: Deep Learning Applications and Intelligent Decision Making in Engineering ISBN: 1799821099 ISBN-13(EAN): 9781799821090 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 24948.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Provides practical applications of deep learning to improve decision-making methods and construct smart environments. Highlighting topics such as smart transportation, e-commerce, and cyber physical systems, this book is designed for engineers, computer scientists, programmers, software engineers, researchers, academics, and students.
Описание: Artificial intelligence is at the forefront of research and implementation in many industries including healthcare and agriculture. Whether it's detecting disease or generating algorithms, deep learning techniques are advancing exponentially. Researchers and professionals need a platform in which they can keep up with machine learning trends and their developments in the real world.
The Handbook of Research on Applications and Implementations of Machine Learning Techniques provides innovative insights into the multi-disciplinary applications of machine learning algorithms for data analytics. The content within this publication examines disease identification, neural networks, and language support. It is designed for IT professionals, developers, data analysts, technology specialists, R&D professionals, industrialists, practitioners, researchers, academicians, and students seeking research on deep learning procedures and their enactments in the fields of medicine, engineering, and computer science.
Описание: A compact sequence encoding scheme for online human activity recognition in HRI applications.- Classification of Coseismic Landslides using Fuzzy and Machine Learning Techniques.- Evaluating the Transferability of Personalised Exercise Recognition Models.- Deep Learning-Based Computer Vision Application with Multiple Built-In Data Science-Oriented Capabilities.- Visual Movement Prediction for Stable Grasp Point Detection.- Accomplished level of reliability for seismic structural damage prediction using artificial neural networks.- Efficient Implementation of a Self-Sufficient Solar-Powered Real-Time Deep Learning-Based System.- Leveraging Radar Features to Improve Point Clouds Segmentation with Neural Networks.- LSTM Neural Network for Fine-Granularity Estimation on Baseline Load of Fast Demand Response.- Predicting Permeability Based On Core Analysis.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru