Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Hidden Link Prediction in Stochastic Social Networks, Babita Pandey, Aditya Khamparia


Варианты приобретения
Цена: 28552.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до:
Ориентировочная дата поставки:
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Babita Pandey, Aditya Khamparia
Название:  Hidden Link Prediction in Stochastic Social Networks
ISBN: 9781522590965
Издательство: Mare Nostrum (Eurospan)
Классификация:






ISBN-10: 152259096X
Обложка/Формат: Hardcover
Страницы: 300
Вес: 0.75 кг.
Дата издания: 30.04.2019
Серия: Advances in social networking and online communities
Язык: English
Размер: 254 x 178 x 19
Читательская аудитория: Professional and scholarly
Ключевые слова: Artificial intelligence,Computer networking & communications,Digital lifestyle,Social networking, COMPUTERS / Intelligence (AI) & Semantics,COMPUTERS / Social Aspects / General,COMPUTERS / Web / Social Networking
Рейтинг:
Поставляется из: Англии
Описание: Link prediction is required to understand the evolutionary theory of computing for different social networks. However, the stochastic growth of the social network leads to various challenges in identifying hidden links, such as representation of graph, distinction between spurious and missing links, selection of link prediction techniques comprised of network features, and identification of network types. Hidden Link Prediction in Stochastic Social Networks concentrates on the foremost techniques of hidden link predictions in stochastic social networks including methods and approaches that involve similarity index techniques, matrix factorization, reinforcement, models, and graph representations and community detections. The book also includes miscellaneous methods of different modalities in deep learning, agent-driven AI techniques, and automata-driven systems and will improve the understanding and development of automated machine learning systems for supervised, unsupervised, and recommendation-driven learning systems. It is intended for use by data scientists, technology developers, professionals, students, and researchers.


Stochastic Calculus for Finance I

Автор: Shreve
Название: Stochastic Calculus for Finance I
ISBN: 0387401008 ISBN-13(EAN): 9780387401003
Издательство: Springer
Рейтинг:
Цена: 8384.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Developed for the professional Master`s program in Computational Finance at Carnegie Mellon, the leading financial engineering program in the U.S. Has been tested in the classroom and revised over a period of several yearsExercises conclude every chapter;

Stochastic Networks

Автор: Kelly
Название: Stochastic Networks
ISBN: 1107035775 ISBN-13(EAN): 9781107035775
Издательство: Cambridge Academ
Рейтинг:
Цена: 10930.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Communication networks underpin our modern world, and provide fascinating and challenging examples of large-scale stochastic systems. This compact introduction to some of the stochastic models found useful in the study of communication networks is ideal for graduate students wishing to understand this important area of application.

Stochastic Networks

Автор: Kelly
Название: Stochastic Networks
ISBN: 1107691702 ISBN-13(EAN): 9781107691704
Издательство: Cambridge Academ
Рейтинг:
Цена: 6019.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Communication networks underpin our modern world, and provide fascinating and challenging examples of large-scale stochastic systems. This compact introduction to some of the stochastic models found useful in the study of communication networks is ideal for graduate students wishing to understand this important area of application.

Prediction and Inference from Social Networks and Social Media

Автор: Jalal Kawash; Nitin Agarwal; Tansel ?zyer
Название: Prediction and Inference from Social Networks and Social Media
ISBN: 3319510487 ISBN-13(EAN): 9783319510484
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book addresses the challenges of social network and social media analysis in terms of prediction and inference. These include generating realistic social network topologies, awareness of user activities, topic and trend generation, estimation of user attributes from their social content, and behavior detection.

Optimization of Stochastic Discrete Systems and Control on Complex Networks

Автор: Dmitrii Lozovanu; Stefan Pickl
Название: Optimization of Stochastic Discrete Systems and Control on Complex Networks
ISBN: 3319118323 ISBN-13(EAN): 9783319118321
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Chapter two is dedicated to infinite horizon stochastic discrete optimal control models and Markov decision problems with average and expected total discounted optimization criteria, while Chapter three develops a special game-theoretical approach to Markov decision processes and stochastic discrete optimal control problems.

Stochastic Networks

Автор: Paul Glasserman; Karl Sigman; David D. Yao
Название: Stochastic Networks
ISBN: 0387948287 ISBN-13(EAN): 9780387948287
Издательство: Springer
Рейтинг:
Цена: 14673.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The topics of research in stochastic networks are the complementary subjects of stability and rare events. This volume aims to present a sample of research problems, methodologies, and results in these two burgeoning areas. It originated from a workshop held at Columbia University in 1995, organized by Columbia`s Center for Applied Probability.

Stochastic Project Networks

Автор: Klaus Neumann
Название: Stochastic Project Networks
ISBN: 3540526641 ISBN-13(EAN): 9783540526643
Издательство: Springer
Рейтинг:
Цена: 10760.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents the state of the art of temporal analysis and cost minimization of projects, as well as project planning under limited resources where the projects are modelled by GERT networks. Basic concepts are summarized and the book is self-contained.

Neural Networks for Identification, Prediction and Control

Автор: Duc T. Pham; Xing Liu
Название: Neural Networks for Identification, Prediction and Control
ISBN: 1447132467 ISBN-13(EAN): 9781447132462
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In recent years, there has been a growing interest in applying neural networks to dynamic systems identification (modelling), prediction and control. The neural network types considered in detail are the muhilayer perceptron (MLP), the Elman and Jordan networks and the Group-Method-of-Data-Handling (GMDH) network.

AI Techniques for Reliability Prediction for Electronic Components

Автор: Cherry Bhargava
Название: AI Techniques for Reliability Prediction for Electronic Components
ISBN: 1799814645 ISBN-13(EAN): 9781799814641
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 30215.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In the industry of manufacturing and design, one major constraint has been enhancing operating performance using less time. As technology continues to advance, manufacturers are looking for better methods in predicting the condition and residual lifetime of electronic devices in order to save repair costs and their reputation. Intelligent systems are a solution for predicting the reliability of these components; however, there is a lack of research on the advancements of this smart technology within the manufacturing industry.

AI Techniques for Reliability Prediction for Electronic Components provides emerging research exploring the theoretical and practical aspects of prediction methods using artificial intelligence and machine learning in the manufacturing field. Featuring coverage on a broad range of topics such as data collection, fault tolerance, and health prognostics, this book is ideally designed for reliability engineers, electronic engineers, researchers, scientists, students, and faculty members seeking current research on the advancement of reliability analysis using AI.

AI Techniques for Reliability Prediction for Electronic Components

Автор: Cherry Bhargava
Название: AI Techniques for Reliability Prediction for Electronic Components
ISBN: 1799814653 ISBN-13(EAN): 9781799814658
Издательство: Mare Nostrum (Eurospan)
Цена: 24948.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In the industry of manufacturing and design, one major constraint has been enhancing operating performance using less time. As technology continues to advance, manufacturers are looking for better methods in predicting the condition and residual lifetime of electronic devices in order to save repair costs and their reputation. Intelligent systems are a solution for predicting the reliability of these components; however, there is a lack of research on the advancements of this smart technology within the manufacturing industry. AI Techniques for Reliability Prediction for Electronic Components provides emerging research exploring the theoretical and practical aspects of prediction methods using artificial intelligence and machine learning in the manufacturing field. Featuring coverage on a broad range of topics such as data collection, fault tolerance, and health prognostics, this book is ideally designed for reliability engineers, electronic engineers, researchers, scientists, students, and faculty members seeking current research on the advancement of reliability analysis using AI.

Multi-Objective Stochastic Programming in Fuzzy Environments

Автор: Animesh Biswas, Arnab Kumar De
Название: Multi-Objective Stochastic Programming in Fuzzy Environments
ISBN: 1522592962 ISBN-13(EAN): 9781522592969
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 24116.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: It is frequently observed that most decision-making problems involve several objectives, and the aim of the decision makers is to find the best decision by fulfilling the aspiration levels of all the objectives. Multi-objective decision making is especially suitable for the design and planning steps and allows a decision maker to achieve the optimal or aspired goals by considering the various interactions of the given constraints. Multi-Objective Stochastic Programming in Fuzzy Environments discusses optimization problems with fuzzy random variables following several types of probability distributions and different types of fuzzy numbers with different defuzzification processes in probabilistic situations. The content within this publication examines such topics as waste management, agricultural systems, and fuzzy set theory. It is designed for academicians, researchers, and students.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия