Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Representations of Finite Groups of Lie Type, Francois Digne, Jean Michel


Варианты приобретения
Цена: 17424.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Francois Digne, Jean Michel
Название:  Representations of Finite Groups of Lie Type
ISBN: 9781108481489
Издательство: Cambridge Academ
Классификация:
ISBN-10: 1108481485
Обложка/Формат: Hardcover
Страницы: 272
Вес: 0.49 кг.
Дата издания: 05.03.2020
Серия: London mathematical society student texts
Язык: English
Издание: 2 revised edition
Иллюстрации: Worked examples or exercises; 6 tables, black and white
Размер: 234 x 156 x 19
Читательская аудитория: Professional and scholarly
Ключевые слова: Algebra, MATHEMATICS / Algebra / General
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: The original edition of this book, written for beginning graduate students, was the first elementary treatment of representation theory of finite groups of Lie type in book form. This second edition features new material to reflect the continuous evolution of the subject, including chapters on Hecke algebras and Green functions.


      Старое издание

Representations of Finite Groups of Lie Type

Автор: Francois Digne, Jean Michel
Название: Representations of Finite Groups of Lie Type
ISBN: 1108722628 ISBN-13(EAN): 9781108722629
Издательство: Cambridge Academ
Рейтинг:
Цена: 7286.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The original edition of this book, written for beginning graduate students, was the first elementary treatment of representation theory of finite groups of Lie type in book form. This second edition features new material to reflect the continuous evolution of the subject, including chapters on Hecke algebras and Green functions.

Linear Representations of Finite Groups

Автор: Leonhard L. Scott; Jean-Pierre Serre
Название: Linear Representations of Finite Groups
ISBN: 1468494600 ISBN-13(EAN): 9781468494600
Издательство: Springer
Рейтинг:
Цена: 7819.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book consists of three parts, rather different in level and purpose. The first part was originally written for quantum chemists. The second part is a course given in 1966 to second-year students of l`Ecole Normale. It completes in a certain sense the first part. The third part is an introduction to Brauer Theory.

Representations of Solvable Lie Groups: Basic Theory and Examples

Автор: Didier Arnal, Bradley Currey
Название: Representations of Solvable Lie Groups: Basic Theory and Examples
ISBN: 1108428096 ISBN-13(EAN): 9781108428095
Издательство: Cambridge Academ
Рейтинг:
Цена: 23285.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This monograph answers the need for a unified account of the basic theory of unitary group representations, combined with new results, in a style that is broadly accessible for both graduate students and researchers.

Bombay Lectures On Highest Weight Representations Of Infinite Dimensional Lie Algebras (2Nd Edition)

Автор: Kac Victor G Et Al
Название: Bombay Lectures On Highest Weight Representations Of Infinite Dimensional Lie Algebras (2Nd Edition)
ISBN: 9814522198 ISBN-13(EAN): 9789814522199
Издательство: World Scientific Publishing
Рейтинг:
Цена: 5069.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The first edition of this book is a collection of a series of lectures given by Professor Victor Kac at the TIFR, Mumbai, India in December 1985 and January 1986. These lectures focus on the idea of a highest weight representation, which goes through four different incarnations.The first is the canonical commutation relations of the infinite dimensional Heisenberg Algebra (= oscillator algebra). The second is the highest weight representations of the Lie algebra gℓ∞ of infinite matrices, along with their applications to the theory of soliton equations, discovered by Sato and Date, Jimbo, Kashiwara and Miwa. The third is the unitary highest weight representations of the current (= affine Kac-Moody) algebras. These Lie algebras appear in the lectures in connection to the Sugawara construction, which is the main tool in the study of the fourth incarnation of the main idea, the theory of the highest weight representations of the Virasoro algebra. In particular, the book provides a complete proof of the Kac determinant formula, the key result in representation theory of the Virasoro algebra.The second edition of this book incorporates, as its first part, the largely unchanged text of the first edition, while its second part is the collection of lectures on vertex algebras, delivered by Professor Kac at the TIFR in January 2003. The basic idea of these lectures was to demonstrate how the key notions of the theory of vertex algebras -- such as quantum fields, their normal ordered product and lambda-bracket, energy-momentum field and conformal weight, untwisted and twisted representations -- simplify and clarify the constructions of the first edition of the book.This book should be very useful for both mathematicians and physicists. To mathematicians, it illustrates the interaction of the key ideas of the representation theory of infinite dimensional Lie algebras and of the theory of vertex algebras; and to physicists, these theories are turning into an important component of such domains of theoretical physics as soliton theory, conformal field theory, the theory of two-dimensional statistical models, and string theory.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия