Mathematics for Machine Learning, Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong
Автор: Christopher M. Bishop Название: Pattern Recognition and Machine Learning ISBN: 0387310738 ISBN-13(EAN): 9780387310732 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Описание: Treats the dynamics of both iteration of functions and solutions of ordinary differential equations. This book introduces various concepts for iteration of functions where the geometry is simpler, but results are interpreted for differential equations. It concentrates on properties of the whole system or subsets of the system.
A brand new, fully updated edition of a popular classic on matrix differential calculus with applications in statistics and econometrics
This exhaustive, self-contained book on matrix theory and matrix differential calculus provides a treatment of matrix calculus based on differentials and shows how easy it is to use this theory once you have mastered the technique. Jan Magnus, who, along with the late Heinz Neudecker, pioneered the theory, develops it further in this new edition and provides many examples along the way to support it.
Matrix calculus has become an essential tool for quantitative methods in a large number of applications, ranging from social and behavioral sciences to econometrics. It is still relevant and used today in a wide range of subjects such as the biosciences and psychology. Matrix Differential Calculus with Applications in Statistics and Econometrics, Third Edition contains all of the essentials of multivariable calculus with an emphasis on the use of differentials. It starts by presenting a concise, yet thorough overview of matrix algebra, then goes on to develop the theory of differentials. The rest of the text combines the theory and application of matrix differential calculus, providing the practitioner and researcher with both a quick review and a detailed reference.
Fulfills the need for an updated and unified treatment of matrix differential calculus
Contains many new examples and exercises based on questions asked of the author over the years
Covers new developments in field and features new applications
Written by a leading expert and pioneer of the theory
Part of the Wiley Series in Probability and Statistics
Matrix Differential Calculus With Applications in Statistics and Econometrics Third Edition is an ideal text for graduate students and academics studying the subject, as well as for postgraduates and specialists working in biosciences and psychology.
Автор: Capinski Название: Mathematics for Finance ISBN: 0857290819 ISBN-13(EAN): 9780857290816 Издательство: Springer Рейтинг: Цена: 4884.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Mathematics for Finance: An Introduction to Financial Engineering combines financial motivation with mathematical style.
Автор: Joshi Название: Introduction to Mathematical Portfolio Theory ISBN: 1107042313 ISBN-13(EAN): 9781107042315 Издательство: Cambridge Academ Рейтинг: Цена: 9029.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A concise yet comprehensive guide to the mathematics of portfolio theory from a modelling perspective, with discussion of the assumptions, limitations and implementations of the models as well as the theory underlying them. Aimed at advanced undergraduates, this book can be used for self-study or as a course text.
Автор: Little Название: Statistical Analysis with Missing Data, Third Edit ion ISBN: 0470526793 ISBN-13(EAN): 9780470526798 Издательство: Wiley Рейтинг: Цена: 12664.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Reflecting new application topics, Statistical Analysis with Missing Data offers a thoroughly up-to-date, reorganized survey of current methodology for handling missing data problems. The third edition reviews historical approaches to the subject and describe rigorous yet simple methods for multivariate analysis with missing values.
Автор: Strogatz Steven Название: Nonlinear Dynamics and Chaos ISBN: 0813349109 ISBN-13(EAN): 9780813349107 Издательство: Taylor&Francis Рейтинг: Цена: 10564.00 р. Наличие на складе: Поставка под заказ.
Описание: This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.A unique feature of the book is its emphasis on applications. These include mechanical vibrations, lasers, biological rhythms, superconducting circuits, insect outbreaks, chemical oscillators, genetic control systems, chaotic waterwheels, and even a technique for using chaos to send secret messages. In each case, the scientific background is explained at an elementary level and closely integrated with mathematical theory.In the twenty years since the first edition of this book appeared, the ideas and techniques of nonlinear dynamics and chaos have found application to such exciting new fields as systems biology, evolutionary game theory, and sociophysics. This second edition includes new exercises on these cutting-edge developments, on topics as varied as the curiosities of visual perception and the tumultuous love dynamics in Gone With the Wind .
Автор: Giraud Название: Introduction to High-Dimensional Statistics ISBN: 1482237946 ISBN-13(EAN): 9781482237948 Издательство: Taylor&Francis Рейтинг: Цена: 9645.00 р. Наличие на складе: Поставка под заказ.
Описание: Ever-greater computing technologies have given rise to an exponentially growing volume of data. Today massive data sets (with potentially thousands of variables) play an important role in almost every branch of modern human activity, including networks, finance, and genetics. However, analyzing such data has presented a challenge for statisticians and data analysts and has required the development of new statistical methods capable of separating the signal from the noise. Introduction to High-Dimensional Statistics is a concise guide to state-of-the-art models, techniques, and approaches for handling high-dimensional data. The book is intended to expose the reader to the key concepts and ideas in the most simple settings possible while avoiding unnecessary technicalities. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this highly accessible text: Describes the challenges related to the analysis of high-dimensional data Covers cutting-edge statistical methods including model selection, sparsity and the lasso, aggregation, and learning theory Provides detailed exercises at the end of every chapter with collaborative solutions on a wikisite Illustrates concepts with simple but clear practical examples Introduction to High-Dimensional Statistics is suitable for graduate students and researchers interested in discovering modern statistics for massive data. It can be used as a graduate text or for self-study.
Автор: Hastie Название: Statistical Learning with Sparsity ISBN: 1498712169 ISBN-13(EAN): 9781498712163 Издательство: Taylor&Francis Рейтинг: Цена: 16843.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Discover New Methods for Dealing with High-Dimensional Data
A sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underlying signal in a set of data.
Top experts in this rapidly evolving field, the authors describe the lasso for linear regression and a simple coordinate descent algorithm for its computation. They discuss the application of ℓ1 penalties to generalized linear models and support vector machines, cover generalized penalties such as the elastic net and group lasso, and review numerical methods for optimization. They also present statistical inference methods for fitted (lasso) models, including the bootstrap, Bayesian methods, and recently developed approaches. In addition, the book examines matrix decomposition, sparse multivariate analysis, graphical models, and compressed sensing. It concludes with a survey of theoretical results for the lasso.
In this age of big data, the number of features measured on a person or object can be large and might be larger than the number of observations. This book shows how the sparsity assumption allows us to tackle these problems and extract useful and reproducible patterns from big datasets. Data analysts, computer scientists, and theorists will appreciate this thorough and up-to-date treatment of sparse statistical modeling.
Автор: Raschka, Sebastian Mirjalili, Vahid Название: Python machine learning - ISBN: 1787125939 ISBN-13(EAN): 9781787125933 Издательство: Неизвестно Цена: 8091.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This second edition of Python Machine Learning by Sebastian Raschka is for developers and data scientists looking for a practical approach to machine learning and deep learning. In this updated edition, you`ll explore the machine learning process using Python and the latest open source technologies, including scikit-learn and TensorFlow 1.x.
Автор: Dickson, David C. M. Название: Actuarial Mathematics for Life Contingent Risks ISBN: 1107044073 ISBN-13(EAN): 9781107044074 Издательство: Cambridge Academ Рейтинг: Цена: 12514.00 р. Наличие на складе: Поставка под заказ.
Описание: Actuarial Mathematics for Life Contingent Risks, 2nd edition, is the sole required text for the Society of Actuaries Exam MLC Fall 2015 and Spring 2016. It covers the entire syllabus for the SOA Exam MLC, including new sections for Spring 2016. It is ideal for university courses and for individuals preparing for professional actuarial examinations - especially the new, long-answer exam questions. Three leaders in actuarial science balance rigor with intuition and emphasize practical applications using computational techniques to provide a modern perspective on life contingencies and equip students for the products and risk structures of the future. The authors then develop a more contemporary outlook, introducing multiple state models, emerging cash flows and embedded options. The 210 exercises provide meaningful practice with both long-answer and multiple choice questions. Furthermore: • the book has been updated to include new material on discrete time Markov processes, on models involving joint lives, and on universal life insurance and participating traditional insurance • the Solutions Manual (ISBN 9781107620261), available for separate purchase, provides detailed solutions to the text's exercises.
Автор: Miroslav Kubat Название: An Introduction to Machine Learning ISBN: 3319348868 ISBN-13(EAN): 9783319348865 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents basic ideas of machine learning in a way that is easy to understand, by providing hands-on practical advice, using simple examples, and motivating students with discussions of interesting applications.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru