Описание: Getting numbers is easy; getting trustworthy numbers is hard. From experimentation leaders at Amazon, Google, LinkedIn, and Microsoft, this guide to accelerating innovation using A/B tests includes practical examples, pitfalls, and advice for students and industry professionals, plus deeper dives into advanced topics for experienced practitioners.
Автор: Foster Provost Название: Data Science For Business: What You Need To Know About Data Mining And Dataanalytic Thinking ISBN: 1449361323 ISBN-13(EAN): 9781449361327 Издательство: Wiley Рейтинг: Цена: 6334.00 р. Наличие на складе: Есть (1 шт.) Описание: This broad, deep, but not-too-technical guide introduces you to the fundamental principles of data science and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect.
Автор: Guangren Shi Название: Data Mining and Knowledge Discovery for Geoscientists ISBN: 0124104371 ISBN-13(EAN): 9780124104372 Издательство: Elsevier Science Рейтинг: Цена: 15159.00 р. Наличие на складе: Нет в наличии.
Описание: Addresses challenges by summarizing the developments in geosciences data mining and arming scientists with the ability to apply key concepts to effectively analyze and interpret vast amounts of critical information. This title focuses on 22 of data mining`s practical algorithms and application samples.
Автор: Holmes Susan Название: Modern Statistics for Modern Biology ISBN: 1108705294 ISBN-13(EAN): 9781108705295 Издательство: Cambridge Academ Рейтинг: Цена: 8237.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Designed for a new generation of biologists, this textbook teaches modern computational statistics by using R/Bioconductor to analyze experimental data from high-throughput technologies. The presentation minimizes mathematical notation and emphasizes inductive understanding from well-chosen examples, hands-on simulation, and visualization.
Автор: Gunter Wallner Название: Data Analytics Applications in Gaming and Entertainment ISBN: 1138104434 ISBN-13(EAN): 9781138104433 Издательство: Taylor&Francis Рейтинг: Цена: 16078.00 р. Наличие на складе: Нет в наличии.
Описание: Over the last decade big data and data mining has received growing interest and importance in game production to process and draw actionable insights from large volumes of player-related data in order to inform game design, to ensure customer satisfaction, to maximize revenues, and to drive technical innovation.
Автор: Samantha Kleinberg Название: Time and Causality Across the Sciences ISBN: 1108476678 ISBN-13(EAN): 9781108476676 Издательство: Cambridge Academ Рейтинг: Цена: 9186.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book provides an entry point for researchers in any field, bringing together perspectives collected from a large body of work on causality across disciplines. Topics include whether quantum mechanics allows causes to precede their effects, the integration of mechanisms, and insight into the role played by intervention and timing information.
Описание: Algorithms and Applications for Academic Search, Recommendation and Quantitative Association Rule Mining presents novel algorithms for academic search, recommendation and association rule mining that have been developed and optimized for different commercial as well as academic purpose systems. Along with the design and implementation of algorithms, a major part of the work presented in the book involves the development of new systems both for commercial as well as for academic use. In the first part of the book the author introduces a novel hierarchical heuristic scheme for re-ranking academic publications retrieved from standard digital libraries. The scheme is based on the hierarchical combination of a custom implementation of the term frequency heuristic, a time-depreciated citation score and a graph-theoretic computed score that relates the paper’s index terms with each other. In order to evaluate the performance of the introduced algorithms, a meta-search engine has been designed and developed that submits user queries to standard digital repositories of academic publications and re-ranks the top-n results using the introduced hierarchical heuristic scheme. In the second part of the book the design of novel recommendation algorithms with application in different types of e-commerce systems are described. The newly introduced algorithms are a part of a developed Movie Recommendation system, the first such system to be commercially deployed in Greece by a major Triple Play services provider. The initial version of the system uses a novel hybrid recommender (user, item and content based) and provides daily recommendations to all active subscribers of the provider (currently more than 30,000). The recommenders that we are presenting are hybrid by nature, using an ensemble configuration of different content, user as well as item-based recommenders in order to provide more accurate recommendation results.The final part of the book presents the design of a quantitative association rule mining algorithm. Quantitative association rules refer to a special type of association rules of the form that antecedent implies consequent consisting of a set of numerical or quantitative attributes. The introduced mining algorithm processes a specific number of user histories in order to generate a set of association rules with a minimally required support and confidence value. The generated rules show strong relationships that exist between the consequent and the antecedent of each rule, representing different items that have been consumed at specific price levels. This research book will be of appeal to researchers, graduate students, professionals, engineers and computer programmers.
Автор: Ivezic?, Z?eljko, Название: Statistics, data mining, and machine learning in astronomy : ISBN: 0691198306 ISBN-13(EAN): 9780691198309 Издательство: Wiley Рейтинг: Цена: 12355.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Statistics, Data Mining, and Machine Learning in Astronomy is the essential introduction to the statistical methods needed to analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the Large Synoptic Survey Telescope. Now fully updated, it presents a wealth of practical analysis problems, evaluates the techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. Python code and sample data sets are provided for all applications described in the book. The supporting data sets have been carefully selected from contemporary astronomical surveys and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, engage with the different methods, and adapt them to their own fields of interest.
An accessible textbook for students and an indispensable reference for researchers, this updated edition features new sections on deep learning methods, hierarchical Bayes modeling, and approximate Bayesian computation. The chapters have been revised throughout and the astroML code has been brought completely up to date.
Fully revised and expanded
Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets
Features real-world data sets from astronomical surveys
Uses a freely available Python codebase throughout
Ideal for graduate students, advanced undergraduates, and working astronomers
Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.
Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.
Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.
It contains
Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.
Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
Includes open-access online courses that introduce practical applications of the material in the book
Автор: Hao Jiang; Qimei Chen; Yuanyuan Zeng; Deshi Li Название: Mobile Data Mining and Applications ISBN: 3030165027 ISBN-13(EAN): 9783030165024 Издательство: Springer Рейтинг: Цена: 18167.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book focuses on mobile data and its applications in the wireless networks of the future. Several topics form the basis of discussion, from a mobile data mining platform for collecting mobile data, to mobile data processing, and mobile feature discovery. Usage of mobile data mining is addressed in the context of three applications: wireless communication optimization, applications of mobile data mining on the cellular networks of the future, and how mobile data shapes future cities.In the discussion of wireless communication optimization, both licensed and unlicensed spectra are exploited. Advanced topics include mobile offloading, resource sharing, user association, network selection and network coexistence. Mathematical tools, such as traditional convexappl/non-convex, stochastic processing and game theory are used to find objective solutions. Discussion of the applications of mobile data mining to cellular networks of the future includes topics such as green communication networks, 5G networks, and studies of the problems of cell zooming, power control, sleep/wake, and energy saving. The discussion of mobile data mining in the context of smart cities of the future covers applications in urban planning and environmental monitoring: the technologies of deep learning, neural networks, complex networks, and network embedded data mining. Mobile Data Mining and Applications will be of interest to wireless operators, companies, governments as well as interested end users.
Автор: Clarke Название: Principles and Theory for Data Mining and Machine Learning ISBN: 0387981349 ISBN-13(EAN): 9780387981345 Издательство: Springer Рейтинг: Цена: 27950.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Extensive treatment of the most up-to-date topicsProvides the theory and concepts behind popular and emerging methodsRange of topics drawn from Statistics, Computer Science, and Electrical Engineering
Описание: Provides everything readers need to know for applying the power of informatics to materials science There is a tremendous interest in materials informatics and application of data mining to materials science. This book is a one-stop guide to the latest advances in these emerging fields. Bridging the gap between materials science and informatics, it introduces readers to up-to-date data mining and machine learning methods. It also provides an overview of state-of-the-art software and tools. Case studies illustrate the power of materials informatics in guiding the experimental discovery of new materials. Materials Informatics: Methods, Tools and Applications is presented in two parts?Methodological Aspects of Materials Informatics and Practical Aspects and Applications. The first part focuses on developments in software, databases, and high-throughput computational activities. Chapter topics include open quantum materials databases; the ICSD database; open crystallography databases; and more. The second addresses the latest developments in data mining and machine learning for materials science. Its chapters cover genetic algorithms and crystal structure prediction; MQSPR modeling in materials informatics; prediction of materials properties; amongst others. -Bridges the gap between materials science and informatics -Covers all the known methodologies and applications of materials informatics -Presents case studies that illustrate the power of materials informatics in guiding the experimental quest for new materials -Examines the state-of-the-art software and tools being used today Materials Informatics: Methods, Tools and Applications is a must-have resource for materials scientists, chemists, and engineers interested in the methods of materials informatics.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru