Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Singular Spectrum Analysis of Biomedical Signals, Sanei, Saeid , Hassani, Hossein


Варианты приобретения
Цена: 9798.00р.
Кол-во:
 о цене
Наличие: Отсутствует. Возможна поставка под заказ.

При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Sanei, Saeid , Hassani, Hossein
Название:  Singular Spectrum Analysis of Biomedical Signals
ISBN: 9780367377045
Издательство: Taylor&Francis
Классификация:

ISBN-10: 0367377047
Обложка/Формат: Paperback
Страницы: 276
Вес: 1.12 кг.
Дата издания: 27.09.2019
Язык: English
Размер: 234 x 152 x 15
Читательская аудитория: Tertiary education (us: college)
Основная тема: Medical Statistics & Computing
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Европейский союз
Описание:

Recent advancements in signal processing and computerised methods are expected to underpin the future progress of biomedical research and technology, particularly in measuring and assessing signals and images from the human body. This book focuses on singular spectrum analysis (SSA), an effective approach for single channel signal analysis, and its bivariate, multivariate, tensor based, complex-valued, quaternion-valued and robust variants.

SSA currently has numerous applications in detecting abnormalities in quasi-periodic biosignals, such as electrocardiograms, (ECGs or EKGs), oxygen levels, arterial pressure, and electroencephalograms (EEGs). Singular Spectrum Analysis of Biomedical Signals presents relatively newly applied concepts for biomedical applications of SSA, including:

  • Signal source separation, extraction, decomposition, and factorization
  • Physiological, biological, and biochemical signal processing
  • A new SSA grouping algorithm for filtering and noise reduction of genetics data
  • Prediction of various clinical events

The book introduces a new mathematical and signal processing technique for the decomposition of widely available single channel biomedical data. It also provides illustrations of new signal processing results in the form of signals, graphs, images, and tables to reinforce understanding of the related concepts.

Singular Spectrum Analysis of Biomedical Signals enhances current clinical knowledge and aids physicians in improving diagnosis, treatment and monitoring some clinical abnormalities. It also lays groundwork for progress in SSA by making suggestions for future research.




Principles of Biomedical Informatics, 2 ed

Автор: Kalet Ira J.
Название: Principles of Biomedical Informatics, 2 ed
ISBN: 0124160190 ISBN-13(EAN): 9780124160194
Издательство: Elsevier Science
Рейтинг:
Цена: 12462.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Provides a treatment of the deep computational ideas at the foundation of the field. This book includes exercises at the end of each chapter, ideas for student projects, and a number of new topics, such as: tree structured data, interval trees, and time-oriented medical data and their use.

Handbook of Biomedical Image Analysis

Автор: David Wilson; Swamy Laxminarayan
Название: Handbook of Biomedical Image Analysis
ISBN: 1489996494 ISBN-13(EAN): 9781489996497
Издательство: Springer
Рейтинг:
Цена: 53106.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Our goal is to develop automated methods for the segmentation of thr- dimensional biomedical images. Here, we describe the segmentation of c- focal microscopy images of bee brains (20 individuals) by registration to one or several atlas images. Registration is performed by a highly parallel imp- mentation of an entropy-based nonrigid registration algorithm using B-spline transformations. We present and evaluate different methods to solve the cor- spondence problem in atlas based registration. An image can be segmented by registering it to an individual atlas, an average atlas, or multiple atlases. When registering to multiple atlases, combining the individual segmentations into a ?nalsegmentationcanbeachievedbyatlasselection,ormulticlassi?erdecision fusion. Wedescribeallthesemethodsandevaluatethesegmentationaccuracies that they achieve by performing experiments with electronic phantoms as well as by comparing their outputs to a manual gold standard. The present work is focused on the mathematical and computational t- ory behind a technique for deformable image registration termed Hyperelastic Warping, and demonstration of the technique via applications in image regist- tion and strain measurement. The approach combines well-established prin- ples of nonlinear continuum mechanics with forces derived directly from thr- dimensional image data to achieve registration. The general approach does not require the de?nition of landmarks, ?ducials, or surfaces, although it can - commodate these if available. Representative problems demonstrate the robust and ?exible nature of the approach. Three-dimensional registration methods are introduced for registering MRI volumes of the pelvis and prostate. The chapter ?rst reviews the applications, xi xii Preface challenges, and previous methods of image registration in the prostate.

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques

Автор: Subasi, Abdulhamit
Название: Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques
ISBN: 0128174447 ISBN-13(EAN): 9780128174449
Издательство: Elsevier Science
Рейтинг:
Цена: 19875.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques: A MATLAB Based Approach presents how machine learning and biomedical signal processing methods can be used in biomedical signal analysis. Different machine learning applications in biomedical signal analysis, including those for electrocardiogram, electroencephalogram and electromyogram are described in a practical and comprehensive way, helping readers with limited knowledge. Sections cover biomedical signals and machine learning techniques, biomedical signals, such as electroencephalogram (EEG), electromyogram (EMG) and electrocardiogram (ECG), different signal-processing techniques, signal de-noising, feature extraction and dimension reduction techniques, such as PCA, ICA, KPCA, MSPCA, entropy measures, and other statistical measures, and more.

This book is a valuable source for bioinformaticians, medical doctors and other members of the biomedical field who need a cogent resource on the most recent and promising machine learning techniques for biomedical signals analysis.

  • Provides comprehensive knowledge in the application of machine learning tools in biomedical signal analysis for medical diagnostics, brain computer interface and man/machine interaction
  • Explains how to apply machine learning techniques to EEG, ECG and EMG signals
  • Gives basic knowledge on predictive modeling in biomedical time series and advanced knowledge in machine learning for biomedical time series

ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия