Metasolutions of Parabolic Equations in Population Dynamics, L?pez-G?mez, Juli?n
Автор: VIOREL BARBU Название: Controllability and Stabilization of Parabolic Equations ISBN: 3319766651 ISBN-13(EAN): 9783319766652 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This monograph presents controllability and stabilization methods in control theory that solve parabolic boundary value problems.
Автор: A. Iacob; A. Ashyralyev; P.E. Sobolevskii Название: Well-Posedness of Parabolic Difference Equations ISBN: 3034896611 ISBN-13(EAN): 9783034896610 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A well-known and widely applied method of approximating the solutions of problems in mathematical physics is the method of difference schemes. The investigation is based on a new notion of positivity of difference operators in Banach spaces, which allows one to deal with difference schemes of arbitrary order of accuracy.
Описание: This book is devoted to new classes of parabolic differential and pseudo-differential equations extensively studied in the last decades, such as parabolic systems of a quasi-homogeneous structure, degenerate equations of the Kolmogorov type, pseudo-differential parabolic equations, and fractional diffusion equations.
Автор: Fuensanta Andreu-Vaillo; Vicent Caselles; Jos? M. Название: Parabolic Quasilinear Equations Minimizing Linear Growth Functionals ISBN: 3034896247 ISBN-13(EAN): 9783034896245 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
This book contains a detailed mathematical analysis of the variational approach to image restoration based on the minimization of the total variation submitted to the constraints given by the image acquisition model. This model, initially introduced by Rudin, Osher, and Fatemi, had a strong influence in the development of variational methods for image denoising and restoration, and pioneered the use of the BV model in image processing. After a full analysis of the model, the minimizing total variation flow is studied under different boundary conditions, and its main qualitative properties are exhibited. In particular, several explicit solutions of the denoising problem are computed.
Описание: This book is devoted to new classes of parabolic differential and pseudo-differential equations extensively studied in the last decades, such as parabolic systems of a quasi-homogeneous structure, degenerate equations of the Kolmogorov type, pseudo-differential parabolic equations, and fractional diffusion equations.
Описание: This book offers an overview of the theories of linear, semilinear and quasilinear abstract parabolic evolution equations. It also shows how to apply the abstract results to various models in the real world focusing on various self-organization models.
Описание: This book is devoted to the global existence, uniqueness and asymptotic behaviour of smooth solutions to nonlinear parabolic equations and nonlinear hyperbolic-parabolic coupled systems for both small and large initial data. It presents concepts and facts about Sobolev space.
Автор: Ionu? Munteanu Название: Boundary Stabilization of Parabolic Equations ISBN: 3030110982 ISBN-13(EAN): 9783030110987 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
This monograph presents a technique, developed by the author, to design asymptotically exponentially stabilizing finite-dimensional boundary proportional-type feedback controllers for nonlinear parabolic-type equations. The potential control applications of this technique are wide ranging in many research areas, such as Newtonian fluid flows modeled by the Navier-Stokes equations; electrically conducted fluid flows; phase separation modeled by the Cahn-Hilliard equations; and deterministic or stochastic semi-linear heat equations arising in biology, chemistry, and population dynamics modeling.
The text provides answers to the following problems, which are of great practical importance:
Designing the feedback law using a minimal set of eigenfunctions of the linear operator obtained from the linearized equation around the target stateDesigning observers for the considered control systemsConstructing time-discrete controllers requiring only partial knowledge of the state
After reviewing standard notations and results in functional analysis, linear algebra, probability theory and PDEs, the author describes his novel stabilization algorithm. He then demonstrates how this abstract model can be applied to stabilization problems involving magnetohydrodynamic equations, stochastic PDEs, nonsteady-states, and more.
Boundary Stabilization of Parabolic Equations will be of particular interest to researchers in control theory and engineers whose work involves systems control. Familiarity with linear algebra, operator theory, functional analysis, partial differential equations, and stochastic partial differential equations is required.
Описание: In this monograph, the authors develop a comprehensive approach for the mathematical analysis of a wide array of problems involving moving interfaces. It includes an in-depth study of abstract quasilinear parabolic evolution equations, elliptic and parabolic boundary value problems, transmission problems, one- and two-phase Stokes problems, and the equations of incompressible viscous one- and two-phase fluid flows. The theory of maximal regularity, an essential element, is also fully developed. The authors present a modern approach based on powerful tools in classical analysis, functional analysis, and vector-valued harmonic analysis.The theory is applied to problems in two-phase fluid dynamics and phase transitions, one-phase generalized Newtonian fluids, nematic liquid crystal flows, Maxwell-Stefan diffusion, and a variety of geometric evolution equations. The book also includes a discussion of the underlying physical and thermodynamic principles governing the equations of fluid flows and phase transitions, and an exposition of the geometry of moving hypersurfaces.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru